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Abstract 

Aguiar, Ludimar Lima de; advisor: Braga, Arthur Martins Barbosa; co-

advisor: Almeida, Carlos Alberto de; A Three-Dimensional Pipe Beam 

Finite Element For Nonlinear Analysis of Multilayered Risers ond 

Pipelines. Rio de Janeiro, 2013. 124p. D.Sc. Thesis – Departamento de 

Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

This work addresses the behavior of three-dimensional multilayered pipe 

beams with interlayer slip condition, under general three-dimensional large 

displacements, in global riser and pipeline analysis. A new finite element model, 

considering the Timoshenko beam for each element layer, has been formulated 

and implemented. It comprises axial, bending and torsional degrees-of-freedom, 

all varying along the element length according to discretization using Hermitian 

functions: constant axial and torsional loadings, and linear bending moments. 

Transverse shear strains due to bending are also considered in the formulation by 

including two generalized constant degrees-of-freedom. To represent various 

friction conditions between the element layers, nonlinear contact models are 

considered. These conditions are accounted in the model through a proper 

representation of the constitutive relation for the shear stresses behavior in the 

binding material. Derivations of hydrostatic and hydrodynamic loadings due to 

internal and external fluid acting on respective element layers are presented. The 

drag and inertia forces due to external fluid are calculated by using the Morison 

equation. Mass and damping matrices, associated to each element layer, are 

properly derived by adding their respective contributions to the expression of the 

virtual work due to external loading. The FE implementation allows for the 

numerical representation of either bonded or unbonded multilayered risers, 

including small slip effects between layers.  Effects of the pipe-soil interaction are 

also addressed in this work with two contact models considering either no or full 

interaction between friction forces in longitudinal and lateral directions, 

respectively. The element formulation and its numerical capabilities are evaluated 

by some numerical testing, which are compared to other numerical or analytical 

solutions available in the literature. These tests results show that the proposed 

element provides a simple yet robust and reliable tool for general multilayered 

piping analyses. 

 

Keywords 

Multi-layered Pipe Beams, Riser Analysis, Interlayer Slip, Finite Element, 

Nonlinear Dynamic Analysis.  

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Resumo 

Aguiar, Ludimar Lima de; orientador: Braga, Arthur Martins Barbosa; co-

orientador: Almeida, Carlos Alberto de; Um Modelo de Elementos Finitos 

de Pórtico Tridimensional Para Análise Não-Linear de Risers e Dutos 

com Multicamadas. Rio de Janeiro, 2013. 124p. Tese de Doutorado – 

Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do 

Rio de Janeiro. 

Neste trabalho, o comportamento tridimensional de tubos multicamadas 

com escorregamento entre camadas, sob grandes deslocamentos, para aplicação 

em análise global de risers e dutos é avaliado. Foi desenvolvido um novo 

elemento finito, considerando o modelo de viga de Timoshenko em cada camada. 

O elemento contempla os graus de liberdade axial, flexional e torcional, todos 

variando ao longo do elemento de acordo com as funções de interpolação de 

Hermite: carregamentos axial e torcional constantes e momentos fletores lineares. 

As deformações de cisalhamento também foram consideradas na formulação do 

elemento através de graus de liberdades generalizados, constantes ao longo do 

elemento. A formulação também considera modelos de contato não-lineares para 

representar várias possibilidades de atrito entre camadas, através da representação 

apropriada da relação constitutiva para as tensões de cisalhamento no material 

adesivo. O trabalho também apresenta os carregamentos hidrostáticos e 

hidrodinâmicos devidos aos fluidos interno e externo, atuando nos graus de 

liberdade das respectivas camadas. As forças de arrasto e de inércia devidas ao 

fluido externo foram calculadas através da fórmula de Morison. As matrizes de 

massa e amortecimento, associadas a cada camada do elemento, são obtidas 

através da consideração das respectivas contribuições na expressão do trabalho 

virtual desenvolvido pelo carregamento externo. O elemento finito desenvolvido 

permite a representação numérica de risers com camadas aderentes ou não 

aderentes, incluindo os efeitos de pequenos deslocamentos entre camadas. O 

problema de interação solo-estrutura também é tratado neste trabalho, sendo que 

dois modelos de contato entre o solo e o duto são propostos. A formulação do 

elemento e o seu desempenho numérico são avaliados através de alguns exemplos 

de aplicação e os resultados são comparados com outros resultados numéricos ou 

analíticos disponíveis na literatura. Os resultados mostram que o novo elemento é 

uma solução simples, robusta e confiável para análise de tubos em multicamadas. 

 

Palavras-chave 

Tubos em Multicamadas, Análise de Risers, Escorregamento entre 

Camadas, Método dos Elementos Finitos, Análise Dinâmica Não-Linear. 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Contents 

1. Introduction 16 

2. Multilayered Pipe Beam Element 20 

2.1. Basic Formulation for Large Rotations 22 

2.2. Kinematics of Deformation 23 

2.3. Finite Element Formulation 26 

2.4. Element Displacement Field Interpolation 27 

2.5. Element Layer Stiffness Matrices 31 

2.6. Element Layer Mass Matrix 32 

2.7. Element Layer Damping Matrix 33 

2.8. Contact Conditions 33 

2.9. Interface Constitutive Model 36 

2.10. Interface Stiffness Matrix 40 

2.11. Transverse Displacement Compatibility 42 

2.12. Element Stiffness Matrix 44 

3. Fluid Loads 46 

3.1. Fluid Weight and Buoyancy Forces 46 

3.2. Hydrodynamic Loads 47 

4. Implementation of the Three-Dimensional Multilayer Pipe Beam Element  

 50 

4.1. Global Equilibrium Equation 50 

4.2. Element Updating Procedure 51 

5. Pipe-Soil Interaction 55 

5.1. Normal Reaction 56 

5.2. Longitudinal and Lateral Reactions 57 

5.2.1. Coupled Friction 57 

5.2.2. Uncoupled Friction 61 

5.3. Soil Transformation Matrix 63 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



5.4. Numerical Implementation 64 

6. Numerical Tests 66 

6.1. Single Layer Models 66 

6.1.1. Cantilever Beam Subjected to Pure Bending 66 

6.1.2. Composite Column Subjected to Eccentric Axial Loading 68 

6.1.3. Out-of-Plane Loading to a Circular Cantilever Beam 71 

6.2. Multilayered Beam Models 75 

6.2.1. Two Layer Pipe Beam Subjected to Axial Loading 75 

6.2.2. Two-Layer Cantilever Beam 79 

6.2.3. Two-Layer Cantilever Beam Submitted to Distributed Loading 83 

6.2.4. Dynamic Analysis of a Circular Two-Layer Cantilever Beam 85 

6.2.5. Two-Layer Cantilever Under Hydrostatic and Hydrodynamic Loading 86 

6.3. Multilayered Riser Analysis 89 

6.3.1. Flexible Riser in Catenary Configuration 89 

6.3.2. Steel Catenary Riser 93 

7. Concluding Remarks 103 

8. References 105 

Appendix A:  Two Layer Pipe Beam 109 

A.1. Two Layer Pipe Under Axial Loading 109 

A.2. Two Layer Pipe Beam Element Under Bending 113 

Appendix B:   Nonlinear Multilayer Pipe Beam Element Matrices 121 

B.1. Linear Stiffness Matrix 121 

B.2. Geometric Stiffness Matrix 122 

B.3. Mass Matrix 123 

B.4. Interface Stiffness Matrix 124 

 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



List of Figures 

Figure 1: Beam Element Reference Configurations. 21 

Figure 2: Spatial Transformation Between Two Vectors. 22 

Figure 3: Multilayer Element in Two Successive Configurations. 23 

Figure 4: Details of Interface Straining In a Two-Layer Pipe Wall Segment.  

 34 

Figure 5: Linear Elastic Constitutive Relation - Slip Model Representation.  

 34 

Figure 6: Layer contact with static friction. 35 

Figure 7: Layer Contact With Kinetic Friction. 35 

Figure 8: Rupture – Multi-Linear Elastic-Perfect Plastic Model. 36 

Figure 9: Directions for Relative Displacements. 36 

Figure 10: Angular Coordinate φ at the Interface. 40 

Figure 11: Reference Systems for Penalty Method. 44 

Figure 12: Fluid Load on a Beam Element. 46 

Figure 13: Soil Springs. 55 

Figure 14: Pipe-Soil Relative Displacements. 56 

Figure 15: Normal Contact Model. 56 

Figure 16: Lateral and Longitudinal Contact. 57 

Figure 17: Pipe-Soil Friction Model. 58 

Figure18: Radial Return Mapping. 61 

Figure 19: Soil Reference System. 63 

Figure 20: Cantilever Beam Under Pure Bending. 67 

Figure 21: Cantilever Beam: Deformed Configurations. 68 

Figure 22: Normalized Displacements at Beam Tip. 68 

Figure 23: Composite Column Under to Eccentric Axial Load. 69 

Figure 24: Composite Column: Deformed Configurations. 70 

Figure 25: Bending Moment Along the Composite Column, for P=0.2 kN. 70 

Figure 26: Normalized Displacement at the Top of the Composite Column. 71 

Figure 27: Circular Cantilever Beam Under Transverse Loading. 72 

Figure 28: Circular Cantilever Beam: Deformed Configurations. 72 

Figure 29: Normalized Displacements for the Circular Cantilever Beam. 73 

Figure 30: Two Layer Pipe Beam Under Axial Loading 76 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Figure 31: Axial displacements – Linear Elastic Slip. 76 

Figure 32: Longitudinal Contact Stresses at the Interface – Linear Elastic Slip. 77 

Figure 33: Contact Stresses at Interface – Slip with Static Friction. 78 

Figure 34: Residual Contact Stresses at Interface After Unloading – Slip With 

Static Friction. 78 

Figure 35: Applied Load vs. Axial Displacements at the Free End of Each Layer - 

Slip With Static Friction. 79 

Figure 36: Applied Load vs. Relative Axial Displacement at the Beam Tip - Slip 

with Static Friction. 79 

Figure 37: Two-Layer Cantilever Beam. 80 

Figure 38: Bending Moment at Each Element Layer (One Material). 80 

Figure 39: Axial Stress Distribution at Mid-Length Cross Section (One Material).  

 81 

Figure 40: Bending Moment at Each Element Layer (Layers with Different 

Materials). 81 

Figure 41: Axial Stress Distribution at Mid-Length Cross Section (Different 

Materials). 82 

Figure 42: Normalized Displacements at the Two-Layer Cantilever Beam Tip. 82 

Figure 43: Properties for the Two-Layer Cantilever Beam Under Distributed 

Loading. 83 

Figure 44: Beam Tip Displacements – Static Analysis 84 

Figure 45: Beam Tip Displacements – Dynamic Analysis 85 

Figure 46: Geometrical and Material Properties for the Circular Two-Layer 

Cantilever Beam. 86 

Figure 47: Circular Cantilever Beam Tip Displacements in Dynamics Analysis. 86 

Figure 48: Submerged Cantilever Beam. 87 

Figure 49: Deformed Shapes for Various Loading Conditions. 88 

Figure 50: Vertical Displacements at Beam Tip. 88 

Figure 51: Flexible Riser in Catenary Configuration. 89 

Figure 52: Bending Moment Distribution Along Multilayered Riser. 91 

Figure 53: Dynamic Analysis Results for Multilayered Flexible Riser. 92 

Figure 54: Initial Deformed Configuration for the Steel Catenary Riser. 93 

Figure 55: SCR Pipe Cross Section. 94 

Figure 56: Static Loading for the SCR Model. 95 

Figure 57: Dynamic Loading for the SCR Model. 95 

Figure 58: Deformed Configuration at the end of Static Analysis. 96 

Figure 59: Axial Forces Envelope – Bonded Model. 98 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Figure 60: Bending Moment Envelope – Bonded Model. 99 

Figure 61: von Mises Stresses Envelope – Bonded Model. 99 

Figure 62: Axial Forces Envelope – Unbonded Model. 100 

Figure 63: Bending Moment Envelope – Unbonded Model. 100 

Figure 64: von Mises Stresses Envelope – Unbonded Model. 101 

Figure 65: Time History for Axial Force at Top Connection. 101 

Figure 66: Time History for Bending Moment at Touchdown Point. 102 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



List of Tables 

Table 1: Slip Model Conditions. 37 

Table 2: Distributed Loads Proportional Coefficients. 47 

Table 3: Comparison of Displacements at the Free End of the Beam. 73 

Table 4: Multilayer Riser Properties. 90 

Table 5: Support Reactions at Top and Bottom Connections. 90 

Table 6: Multilayered SCR Cross Section Properties. 94 

Table 7: Soil Properties for the SCR Model. 94 

Table 8: SCR Static Analysis Numerical Results. 97 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Nomenclature 

i  vector index; node index; iteration; 

t  time; 

ZYX ,,  local element reference system; 

zyx ,,  nodal reference system; local coordinates on element cross section; 

k  element layer index; 

layersN  number of layers; 

θ  pseudo-vector of rotation; 

zyx  ,,  components of rotations about X , Y  and Z  axis, respectively; 

u  displacement vector; 

wvu ,,  components of displacements in X , Y  and Z  directions, respectively; 

i  Hermitian polynomials; 

  element coordinate in the longitudinal ( X ) direction; 

  element length; 

  generalized degree-of-freedom for shear strain; 

H  interpolation matrix; 

xx  normal strain component; 

xzxy  ,  shear strain components; 

LB  compatibility matrix for linear strains; 

LK  linear stiffness matrix; 

C  linear-elastic constitutive tensor; 

  angular coordinate at layer or interface cross section; 

kE   layer-k material Young modulus;  

kG  layer-k material shear modulus; 

kA  layer-k cross section area; 

kI  layer-k moment of inertia with respect to the cross section axis of 

symmetry; 

kJ  layer-k polar moment of inertia with respect to the cross section 

geometric center; 
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GK  geometric stiffness matrix; 
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τ  stress components matrix; 
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xzxy  ,  shear stress components; 

ι  interlayer slip vector; 

x  longitudinal slip component; 

  circumferential slip component; 

ck  contact stiffness between layers (slip modulus); 

ep

ck  nonlinear slip modulus; 

 ,x  contact stresses between layers in the longitudinal and circumferential 

directions, respectively; 

iK  interface stiffness matrix; 

pk  penalty parameter; 

pK  penalty stiffness matrix; 

eK  element stiffness matrix, in local coordinate system; 

GK  element stiffness matrix, in global coordinate system; 

ef  element internal forces vector, in local coordinate system; 

pf  penalty internal forces vector, in local coordinate system; 

Gf  element internal forces vector, in global coordinate system; 

K  structure stiffness matrix, in global coordinate system; 

U  structure displacement vector, in global coordinate system; 

R  external force vector, in global coordinate system; 

F  structure internal forces vector, in global coordinate system; 

eR  element rotation matrix; 

nR  nodal rotation matrix; 
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 16 

1.  

Introduction 

Multilayered pipelines have been widely used in the petroleum industry to 

transport almost all types of fluids in the oil production system. Flexible lines are 

the most common example of this type of structure, which consists of a tubular 

arrangement of concentric metallic and polymeric material layers. These layers 

are assembled to give the structure high tensile strength, good thermal insulation 

and low bending stiffness, so that it can be reeled in large segments without using 

intermediate connections. In this fashion, flexible lines can be easily installed, 

uninstalled and reinstalled in various production fields besides such compliant 

structures are capable of absorbing large displacements, as imposed by the 

floating production units. Although widely in use, appropriate representation of 

flexible lines in simulation analysis still represents a great numerical challenge, 

mainly due to their nonlinear dynamic behavior in global riser analysis and to 

nonlinearities caused by its multilayered cross section. 

An alternative to the use of flexible lines is the use of steel rigid lines, which 

have both static (pipelines) and dynamic (risers) applications. However, one 

difficulty when using this type of structure is the need for corrosion resistance due 

to the types of fluids from the production process. A possible solution is the use of 

carbon steel pipes coated with corrosion resistant alloys (CRA). Cladded pipelines 

(CRA metallurgically bonded to carbon steel) have been used in oil and gas 

industry for over 25 years, to transport corrosive products. Another alternative is 

the use of lined pipe (CRA mechanically attached to the carbon steel). In both, 

mechanical design and global riser analyses, with clad or liner, the presence of 

this additional corrosion-resistant metal layer is generally neglected, mainly due 

to difficulties of current available numerical models to adequately represent the 

behavior of multilayered pipes. 
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In the literature, several analytical and numerical solutions have been 

proposed since Newmark et al. [1] first proposed a two-layered Euler-Bernoulli 

beam model considering the linear behavior. More recently, Schnabl et al. [2], 

Foraboschi [3] and Ecsedi and Baksa [4], proposed analytical solutions for two-

layered laminated beams considering interlayer slip condition, but restricted to 

small displacements and linear constitutive models for each layer material. Some 

of these papers also included transverse shear deformation in their formulation. 

Attempts for more general analytical solutions have been proposed by Girhammar 

and Gopu [5] and Girhammar and Pan [6] who presented exact solutions, for first 

and second order analysis procedures, allowing estimations for the magnitude of 

beam deformation and internal actions between layers. They also considered 

occurrence of partial shear interactions in beam-column analyses. Later, 

Girhammar [7] derived an approximate second order analysis procedure for the 

evaluation of composite beam-columns with interlayer slip. Chen et al. [8] 

presented a solution where the combined action of arbitrary transverse and 

constant axial loadings, under static conditions, is considered in a non-uniform 

slip stiffness model. This study was extended by Xu et al. [9] to include dynamics 

and buckling behavior of partial-interaction composite members, accounting for 

transverse shear deformations and cross-section rotary inertia. In a later work, 

these authors proposed extension of their results by using an approximate 

expression of the beam-column fundamental frequency under axial loading (Wu et 

al. [10]). In the same line of investigation, numerical methods were also proposed 

by many authors, mainly based on the finite element method (FEM) approach. A 

strain-based FEM, based on the Timoshenko beam theory for each element layer, 

applicable to linear static analysis of two-layer planar composite beams, with 

interlayer slip, was proposed by Schnabl et al. [11]. Using a similar approach, Čas 

et al. [12, 13] presented a finite element formulation that considers non-linear 

time-dependent constitutive models for the element layers and a non-linear 

relationship between the slip and the shear stress at the interface. In this 

formulation, the geometrically non-linear Reissner’s beam theory was used. 

Buckling analysis of axially compressed layered wood columns was carried out 

and the numerical results were compared with the analytical values of Girhammar 

and Gopu [5]. Krawczyk and Frey [14, 15], proposed a 2D beam element for 

geometric nonlinear analysis of multilayered beams considering interlayer slip. 
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The element formulation is based on the co-rotational approach with 

Timoshenko’s beam theory assumptions. The element is assumed to undergo large 

displacements and rotations, but with small deformations and moderate slip 

between layers. A 2D model comparing the FEM solutions with extended Euler-

Bernoulli’s formulation and Timoshenko’s beam model of slab beams for various 

loadings was presented by Zona and Ranzi [16]. It is shown that displacement and 

stress results in composite members are controlled by the interaction between 

bending and shear (short or long beams), in each case study. The behavior of 

general multi-stacked composite beams with interlayer slip was considered by 

Sousa Jr. and Silva [17] for the rectangular section where curvature locking 

difficulties were identified. Their model represents the composite beam as an 

association of beams and interface elements, providing an efficient solution for 

the multilayered beam problem. 

Several studies on multilayer beams are now available in the literature. 

However most of them have their applications limited to laminated beams under 

in plane loading only. To the best of the author’s knowledge, an appropriate 

representation of multilayered pipes in three-dimensional nonlinear analysis has 

not yet been addressed in the literature. 

More recently, in a 2-D numerical formulation, a two-layer pipe beam 

model under Timoshenko’s beam assumptions was proposed by Aguiar and 

Almeida [18], for small displacement analysis under small strain hypothesis. 

These model capabilities were extended to consider rupture and possible nonlinear 

slip conditions at the interface material between layers [19]. The proposed model 

formulation, which is described in details in Appendix A.2, accounts for axial and 

bending degrees-of-freedom at each layer in a single element model, including the 

classical beam modes of deformation and nonlinear interlayer shear deformation 

condition, which is assumed to be constant through the interlayer material 

thickness, for all loading conditions. In this model, damage at the interface is 

accounted by considering a yielding-type function for the interface material 

constitutive model, in a nonlinear fashion of analysis. 

In the present work, these recently proposed model capabilities have been 

extended to consider the nonlinear behavior of multilayered risers and pipelines in 

general 3-D large displacement representations. An updated Lagrangian 
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formulation is employed including large displacements and rotations. The 

conventional two-node Hermitian displacement functions (Bathe and Bolourchi 

[22]) are employed to represent the element in convected (co-rotated) coordinates. 

The element combines Euler-Bernoulli beam solutions with constant transverse 

shear strains along the length, by adding two generalized degrees-of-freedom to 

conventional axial, bending and torsional ones. Interface binding conditions, 

which have been considered in previous 2-D model [19], are also included in the 

3-D element model formulation, and are dealt in the formulation in a unique and 

novel fashion, allowing the element to represent the behavior of multilayered 

risers and pipelines in both non-linear static and dynamic analyses. The additional 

shear degrees-of-freedom are statically condensed throughout the solution 

procedure and few demonstrative solutions are presented and compared to other 

independently obtained numerical results to demonstrate the element numerical 

capabilities. 
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 20 

2.  

Multilayered Pipe Beam Element 

Studies for the beam element with co-rotational formulation have been the 

subject of various publications [20, 21], and may be regarded as an instance of the 

classical updated Lagrangian formulation [22]. It refers to a straight spatial 

reference configuration, defined by the updated coordinates of the element two 

nodal points, using a Hermitian formulation. Variations of this formulation are 

also available in the literature (Bathe and Bolourchi [22], Crisfield [21] and 

Mourelle [20]), but the formulation presented here is based on the following 

model assumptions: 

 The element is subjected to large displacements and rotations, but  

restricted to small strains and small slip condition between layers; 

 Initially plane, element layer cross sections remain plane and non-

deformed in and out of its plane after element deformation, but not 

necessarily perpendicular to the beam longitudinal axis (Timoshenko 

hypothesis); 

 Under torsion, cross sections remain plane without warping; 

 All element layers share the same transverse displacements at element 

nodes i.e., no separation between layers is allowed. 

In the element formulation, all variables are referred to a co-rotational 

configuration obtained from geometric transformations, including rigid body 

translations and rotations, from an initial non-deformed configuration. These 

variables can be identified from three distinct configurations, illustrated in Figure 

1, and described as follows: 

1) Initial Configuration ( iniC ): represented by the element in its undeformed 

configuration, at spatial time t=0; 
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2) Reference Configuration ( refC ): represented by the configuration in which 

the element has been subjected, from is initial position, to rigid body 

motions only, under no straining; 

3) Deformed Configuration ( defC ): represented by the element in its current 

configuration at time t, after moving with rigid body motions and 

deformations due to applied external loads. 

 

Figure 1: Beam Element Reference Configurations. 

Reference systems attached to the beam element at each configuration are 

shown in Figure 1 and are described as follows:  

 The Global Coordinate System  ZYX : is a spatial coordinate system 

whereby the structure is referred to. This system remains fixed during the 

entire beam analysis; 

 The Initial Local Element Coordinate System  ´´´ ZYX : is a coordinate 

system associated to the element at its initial undeformed configuration 

 iniC . At this configuration, the element is assumed straight with the ´X -

axis coinciding with the element longitudinal direction and the other two 

´Y  and ´Z  axes along the cross section principal directions of inertia; 

 The Local Element Coordinate System  ZYX : is associated to the 

Reference Configuration  refC , which is the Initial Local Element System 
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subjected to rigid body motion. The X -axis lies on the straight line 

defined by the two element nodes at updated position. The formulation of 

the co-rotational element is developed based on this reference system; 

 The Element Layer Nodal Coordinate Systems  k

i

k

i

k

i zyx : are the 

coordinate systems associated to each node (i), for each layer (k), in the 

co-rotational formulation. The nodal systems of each layer are fixed to the 

element nodes, following its movements (translation and rotation). 

2.1.  

Basic Formulation for Large Rotations 

When dealing with a reference vector of transformations in 3-D, an 

orthogonal spatial transformation  R  should be considered 

  01 vRv   (1) 

which is represented in terms of only three independent parameters, as shown by 

Pacoste and Eriksson [26]. This approach results from the use of a pseudo-vector 

of rotation, defined as iθ ˆ , which geometrically represents a unique rotation, 

with an angle  , about a fixed axis defined by the unit vector î .  

 

Figure 2: Spatial Transformation Between Two Vectors. 

In this case, considering the magnitude of the rotation angle 

222

zyx   , the orthogonal rotation matrix (Rodrigues) can be expressed 

by 

x

z

y

0v

î



1v

θ
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     θSθSθSIR
2

cos1sin







 
  (2) 

where I is the 33  identity matrix and  θS  and θ  are a skew-symmetric matrix 

and the rotation pseudo-vector, respectively, both defined as function of 

components x , y  and z , as follows 

  ıθθS ˆ  ,

0

0

0






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


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
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















z

y

x

xy

xz

yz

 (3) 

In the co-rotational formulation used in this work, matrix R  as defined in 

Eq. (2) is used to update the element reference configuration as well as the nodal 

point reference systems. 

2.2.  

Kinematics of Deformation 

Incremental and iterative analysis is considered in the formulation with all 

element reference systems (see Figure 1) being updated after each iteration. In this 

way, two neighboring configurations of a pipe beam segment with multiple layers, 

in two successive configurations, at instants t and t+t, are shown in Figure 3,  

 

Figure 3: Multilayer Element in Two Successive Configurations. 
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where t  is the time increment, 
)(tk

PX  and 
)( Δttk

P


X  are the position vectors of a 

point P  in layer- k  cross section at instants t  and tt  , respectively; )(tk

GX  and 

)( Δttk

G


X  are layer-k geometric center position vectors at instants t  and Δtt  , 

respectively; point P  position in both configurations is expressed in terms of the 

coordinates  zyx ,,  at the local reference system 
kr  and the geometric center 

position vector  k

GX , i.e.: 











 )(

3

)(

2

)()(

)(

3

)(

2

)()(

ˆˆ

ˆˆ

ΔttkΔttkΔttk

G

Δttk

P

tktktk

G

tk

P

zy

zy

rrXX

rrXX
 (4) 

The incremental displacement vector at point P  is then obtained: 

   )(

3

)(

3

)(

2

)(

2

)()( ˆˆˆˆ tkΔttktkΔttkk

G

tk

P
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P

k

P

k

P

k

P
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P zy

w

v

u

rrrruXXu 



















 
 (5) 

where  



















 

w

v

uk

tk

G

Δttk

G

k

G

)()(
XXu  (6) 

is the k-th layer geometric center incremental displacement vector. 

Transformations between the local reference system vectors )3,2( irk

i  at 

time t  and at time tt   are obtained from incremental rotations  zyx  ,, . This 

transformation is obtained by using a suitable rotation matrix  zyx  ,,R ,  

    )3,2(ˆˆ  itk

i

Δttk

i rRr  (7) 

Substituting Eq. (7) into Eq. (5), one obtains point P  incremental 

displacements as 

       tktkk

G

k

P zy 32
ˆˆ rIRrIRuu   (8) 

An approximation for the rotation matrix presented in Eq. (2) is obtained by 

series expansion of the trigonometric terms  
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 (9) 

and, considering terms up to second order only, the Rodrigues formula results in 

the following rotation matrix: 


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R  (10) 

Thus, substituting this second order approximation for the rotation matrix 

into Eq. (8), the displacement vector components of a point P , in a given layer 

“k”, is obtained as a function of the displacements and rotations of the beam 

cross-section, referred to the local reference system 
kr , in the form: 
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 (11) 

where: 
k

Pu , 
k

Pv  and 
k

Pw  are the displacements of point P , in the local reference 

system 
kr  of layer-k; ku , 

k

x , 
k

y  and 
k

z  are the axial displacements and 

rotations measured at the geometric center of each layer- k ; v  and w  are the 

transverse displacements (assumed equal for all layers); and y and z are the local 

coordinates of point P, defined within layer- k  thickness ( k

o

k

i rzyr  22 ), 

with 
k

ir  and 
k

or  being the inner and outer radius, respectively. 

The Green-Lagrange strain tensor components, used in the evaluation of the 

element strain energy, with the Principle of Virtual Work (PVW) [24], is obtained 

from the displacements at a point P  of any layer cross section as  
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(12) 
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2.3.  

Finite Element Formulation 

The multilayered element formulation is obtained considering the strain 

contribution of each layer - associated to linear and nonlinear strain terms - and 

straining at each interface material between layers. Considering the equilibrium of 

one single element layer at time ( tt  ), the PVW for the updated Lagrangian 

formulation, gives [24]: 

tttt

ij

tt

ij

V

dVS     (13) 

where 
tt

ijS 
 is the second Piola-Kirchoff stress tensor [25]; 

tt

ij

  is the Green-

Lagrange strain tensor [25]; and tt   is the virtual work due to external loading 

(body, surface, inertia and damping forces), given by: 

  












 

i

ii

V

ii

V

i

ttS

i

S

i

ttB

i

V

tt dVuudVuudSufdVuf  )()(  
(14) 

 

with 
)( ttB

if


 and 
)( ttS

if


 being body and surface force components, respectively; 

  and   are material mass density and damping property parameter, 

respectively; iu  and iu  are the acceleration and velocity vector components, 

respectively; and iu  are the virtual displacement vector components. 

Variables in Eq. (13) are accounted from the configuration refC  shown in 

Figure 1. The linearized incremental equation requires small displacement 

increments, which allows the second Piola-Kirchoff and the Green-Lagrange 

tensors components to be written in incremental form as 

ij

t

ij

tt

ij

ij

t

ij

tt

ijS













 (15) 

where 
t

ij  are known Cauchy stress tensor components; ij  are the incremental 

stress components; 
t

ij  are known Cauchy-Green strain tensor components; and 

ij  are the incremental strains, which are obtained from Eq. (12) by using the 

incremental displacements. Thus, Eq. (13) can be rewritten as follows: 
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    tt

ij

t

ijij

t

ij

V

dV    (16) 

In the reference configuration the element is subjected to rigid body motions 

only, i.e., there is no deformation, so 0t

ij . Thus, Eq. (16) becomes 

tt

ij

t

ij

V

ijij

V

dVdV     (17) 

The incremental stresses ( ij ) are obtained from the incremental strains 

)( ij  by using a suitable constitutive relation: 

klijklij C    (18) 

where ijklC  is the material constitutive tensor. 

As shown in Eq. (12), the incremental strains have linear ( ije ) and 

nonlinear ( ij ) components, i.e.: 

ijijij e    (19) 

Assuming a linear approximation for the incremental stresses and strains, 

one obtains: 

ijijklijklij eeC      and    (20) 

Substituting Eqs. (19) and (20) into Eq. (17), one obtains the following 

linearized equation: 



 ForcesInternal

 ForcesExternal

NonlinearLinear

  

dVedVdVeeC ij

t

ij

V

tt

ij

t

ij

V

ijklijkl

V

 
   

(21) 

In this equation, the left hand side leads to the linear and nonlinear stiffness 

matrices and the right hand side leads to the external and internal force vectors. 

2.4.  

Element Displacement Field Interpolation 

For a given layer, displacements within the element are obtained from 

interpolated nodal displacements using Hermite polynomials, which represent 

straight beam linear solutions under constant normal, transverse shear and 
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torsional internal loadings, under Euler-Bernouli beam assumptions. Thus, the 

displacement field at layer-k is: 
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(22) 

where 
ku0  is the axial displacements of the element centerline at layer-k;   is the 

element length;   is the longitudinal coordinate along element (  0 ); 0v  and 

0w  are transverse displacements at the element centerline; kv  and kw  are 

transverse displacements along the layer-k centerline due to the nodal rotations 

k

z  e 
k

y , respectively; and 
k

1  and 
k

2  are shear strains at planes  y  and 

 z , respectively (assumed constant along element length); and i  are the 

standard Hermite polynomials defined as: 
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     

     
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4
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2
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2
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





 (23) 

Equations (22) can be extended to element coordinates at layer-k, in matrix 

form, as follows: 

 

 

 

  kk

k

k

k

zy,ξ,

zyw

zyv

zyu

uH



















,,

,,

,,







 (24) 
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where:  zyuk ,, ,  zyvk ,,  and  zywk ,,  are the displacements at a point of 

local coordinates  zy,, , at the element layer- k . From Eq. (22), the element 

interpolation matrix  zyk ,,H  results in: 

   
 

   
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(25) 

and the incremental displacement vector 

 Tkk

zyx

kkk

zyx

kkkk kkkkkk wvuwvu 21222111 222111
u  (26) 

associated to element layer- k (nodal translations and rotations). 

Each linear strain component in Eq. (12), obtained from the displacements 

given by Eq. (22), are defined at any point of layer-k by: 

y
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or 
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 (28) 

Similarly, the shear linear strain components 
k

xye  and 
k

xze  are: 

  
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or 
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 (30) 

and, 
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or 
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Thus, from Equations (28), (30) e (32), linear strain components results in 

the following matrix form 
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where, 
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(34) 

Similarly, for the nonlinear term in Eq. (21) the following matrix form is 

used: 
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G
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where: 
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(36) 
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with cosry   and sinrz  , and: 
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Stress components, at each element layer-k, in local coordinates, are 

obtained from the beam internal forces, at the element nodes, as indicated below. 
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

 (37) 

where 
k

iF  are the layer-k vector of internal forces and moments components; 
kA  

is the layer-k cross section area; 
kI is the layer-k cross section moment of inertia 

with respect to the axis of symmetry; kk IJ 2  is the layer-k cross section polar 

moment of inertia with respect to the cross section geometric center; and   is the 

local coordinate along element length. Details on the derivations of the geometric 

compatibility matrix (
k

GB ) and the stress components matrix ( k ) are presented in 

Bathe and Bolourchi [22]. 

2.5.  

Element Layer Stiffness Matrices 

For a given layer-k, the element linear stiffness matrix is obtained by 

substituting Eq. (33) in the first term of Eq. (21): 
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where BL is the linear compatibility matrix, as defined in Eq. (34), using 

cosry   and sinrz  , and 
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Layer-k geometric stiffness matrix contribution  k

GK  is obtained from Eq. 

(35) and the second term of Eq. (21) that results from 


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T
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i
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00



 (40) 

In Appendices B.1 and B.2, layer-k  k

LK  and  k

GK  matrices are presented 

explicitly. 

2.6.  

Element Layer Mass Matrix 

The mass matrix associated to each element layer-k is obtained by 

substituting Eq. (24) into the inertia term of the external force work expression, 

given by Eq. (14), i.e.: 

uHH 
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







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 . (41) 

Thus, 
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k
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2

00



 (42) 

where 
kM  is the mass matrix associated to the element layer- k ; 

kH  is the 

interpolation matrix defined in Eq. (25) and 
k  is the layer- k  mass density. In 

Appendix B.3 layer-k mass matrix (
kM ) is presented in closed form. 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Chapter 2. Multilayer Pipe Beam Element 33 

 

2.7.  

Element Layer Damping Matrix 

The expression for the element layer damping matrix is obtained by 

substituting Eq. (24) in the damping term of the external forces work expression, 

given by Eq. (14), in the form: 

uHH 


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



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  dVudVuu kkk
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Thus, 
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2

00
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 (44) 

where 
kD  is the damping matrix for the element layer- k ; 

kH  is the interpolation 

matrix defined in Eq. (25) and 
k  is the layer- k  material damping parameter. 

In practice the damping parameter ( ) is not readily available because 

damping properties are frequency dependent. For this reason, in this study matrix 

kD  is not obtained from Eq. (44) and, the structure damping matrix is constructed 

from a linear combination of mass and stiffness matrices, as Rayleigh proportional 

damping [24]: 

kkk
KMD    (45) 

where   and   are constants to be determined from two given damping ratios 

corresponding to two vibration frequencies. 

2.8.  

Contact Conditions 

In this section, model solutions for the interlayer contact used in the finite 

element formulation are derived. The longitudinal and torsional relative 

displacements between layers result in shear stresses at the interlayer material, as 

shown in Figure 4. In the model each interface is assumed to be under constant 

(through the thickness) shearing straining as its thickness ( h ) is very small when 

compared to other pipe cross section dimensions. 
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Figure 4: Details of Interface Straining In a Two-Layer Pipe Wall Segment.  

Thus, shear strain and stress at interface are evaluated using the following 

linear approximation: 

h

u
  and  ku

h

G
G   (46) 

where G  is the interface material shear modulus; 
h

G
k   is the overall contact 

stiffness; and u  is the interlayer relative displacement. 

The idea here is to employ material constitutive relations that may represent 

the overall physical meaning of contact conditions at the interface material 

including certain damage conditions. These attempts are described as follows: 

A. Linear Elastic Slip  

In this case the interlayer material behaves according to the constitutive 

relation shown in Figure 5. Contact stress is proportional to the layers relative 

displacement. This is the constitutive relation used throughout derivations in 

Aguiar and Almeida [18] and is represented by the linear model solution where 

total strain energy in the adhesive is preserved after unloading. 

 

Figure 5: Linear Elastic Constitutive Relation - Slip Model Representation. 

B. Slip With Static Friction  

In this case rupture occurs when shear stress in adhesive material reaches a 

limit value  . Thereafter, contact condition between layers remains through 

friction (static) forces and the “material law” follows the bi-linear constitutive 

h
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F
Layer “b”

Layer “a”F



u

F

F



F

F

F

F

k 






k

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Chapter 2. Multilayer Pipe Beam Element 35 

 

relation shown in Figure 6. In a cycle loading process, total strain energy at 

interface material is not preserved.   

 

Figure 6: Layer contact with static friction. 

where 
e  and 

in  are the elastic and inelastic terms of the relative displacement. 

C. Slip With Kinetic Friction 

In this case a multi-linear constitutive model is required to represent 

material rupture but with kinetic friction between layers. After reaching a limit 

value, shear stress drops to a lower value keeping it constant as in kinetic friction 

force fashion. Again, as in the previous case, total potential energy in the adhesive 

is partially preserved.  

 

Figure 7: Layer Contact With Kinetic Friction. 

D. Rupture 

In this case, a multi-linear constitutive model is employed to represent 

material rupture with no friction between layers. Thus, after reaching a limit 

value, shear stress at interface vanishes. By this model, in a cycling loading 

process, the total strain energy stored during the interface linear behavior is 

completely lost.  
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Figure 8: Rupture – Multi-Linear Elastic-Perfect Plastic Model. 

2.9.  

Interface Constitutive Model 

In this section, the nonlinear constitutive relations shown in Figures 6 to 8 

for the interface material, is presented in detail. For simplicity, the models 

presented above are one-dimensional. However, in a multi-layered pipe, the 

relative displacements can occur in the axial ( x ) as circumferential (  ) 

directions as shown in Figure 9. 

 

Figure 9: Directions for Relative Displacements. 

For all contact conditions discussed, stress state at the interface material 

must remain within the following domain 

  0,|   τRτD f  (47) 

where  ,τf  is the associated yield-type function, expressed in terms of the 

contact stresses τ  and hardening parameter  , with: 

F

F

epk 




or









ine  

y

z
x



r





 ,
x

x 
 ,
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 Tx τ  (48) 

The choice of an appropriate yield function defines the slip condition model. 

Table 1 presents the corresponding yield function used to represent each of the 

contact conditions studied in this work, as discussed in Section 2.8. 

Table 1: Slip Model Conditions. 

Slip Model Yielding Function )(H  

A. Linear Elastic Slip not applicable - 

B. Slip in Static Friction (bi-linear)    ττf  0 

C. Slip in Kinetic Friction (multi-linear)      ττ,f  
according to the 

hardening law D. Rupture (multi-linear) 

where 
22

  x ; with x  and   being the contact stresses in the axial and 

circumferential directions as shown in Figure 9;   is the limit contact stress; and 

 ddfH /)(   is the hardening modulus. 

According to Simo and Hughes [31], the nonlinear slip model can be 

characterized by means of the following set of equations  

 













d

d

kk

d

dfin

ine

ine








r
 (49) 

where γ , 
e
γ  and 

in
γ  are the vectors of total, elastic and inelastic slip measures 

obtained from relative longitudinal and circumferential relative displacements 

between layers; τ  is the vector of contact stresses; k  is the elastic contact 

stiffness parameter;   is the hardening parameter;  is the inelastic slip modulus 

increment to be determined; and r  a unit vector that indicates the “yield” 

direction given by: 
















 x



1
r  (50) 

Thus, the associated mathematical problem consists in: given nn

in

nn ,,, τγγ  

and 1nγ  as a known solution state and new relative displacements, respectively, 
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obtain 
p

n 1γ , 1n  and 1nτ . This problem is solved in two steps. First, an elastic 

increment is assumed to obtain the following trial state 

 

nnn

nn

in

n

in

n

nn

in

nnn

f

kk



































11

1

1

11







 (51) 

From the trial state, it is possible to determine if the slip increment is elastic 

or inelastic according to the criterion 














0 :increment inelastic     0

0    :increment elastic     0
1




nf  (52) 

Assuming an inelastic increment, one obtains the stress 1n  in terms of the 

trial stress 


1n  and the inelastic slip modulus   as: 

 
   

11

11

111

















nn

in

n

in

n

in

nn

in

nnn

k

kk

k

r





 (53) 

Therefore, since 0 , the actual state is written as 

0
111

1

11

111





















nnn

nn

n

in

n

in

n

nnn

f

k















r

r

 (54) 

Now the above problem is solved explicitly in terms of the trial elastic state 

by the following procedure: 

1

*

1111 



  nnnnn k rrr   (55) 

Collecting terms in Eq. (55), one obtains  

  *

1111 



  nnnn k rr    (56) 

As 0  and 0k , the term within brackets in Eq. (56) is necessarily 

positive. Therefore it is required that 



  11 nn rr  (57) 

along with the condition 
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

  11 nn k   . (58) 

From Eqs. (54) and (58), the yield criterion 1nf  is written as  

  011  

  nnn kf  . (59) 

Depending on the hardening law   n , Eq. (59) can be nonlinear and 

must be solved numerically for  . The inelastic constitutive relation is then 

obtained from the consistency condition ( 0df ), as described in Simo and 

Hughes [31]. If 0 , then 

  0,  


 d
d

df
d

d

df
df 


  (60) 

Substituting values for τddf / , ddf / , d  and d , one obtains 

  0 Hdk   rr
T

 (61) 

where ddfH /  is set for each hardening law, as shown in Table 1 . 

Solving Eq. (61) for  , one obtains 




d
Hk

kr
  (62) 

that substituted into Eq. (49), leads to the contact stress increment 




 d
Hk

kH
d   (63) 

Therefore,  

γτ dkd ep  (64) 

where 
















0if

0if





Hk

kH

k

k ep



 (65) 
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2.10.  

Interface Stiffness Matrix 

At the interface, adhesive material is assumed under constant pure shear 

deformation, throughout the cross-section thickness. Interface contribution to the 

element stiffness matrix  is obtained by considering the strain energy associated to 

the interface material, due to adjoining layers relative displacements ( i  denotes 

equivalent shear strains). These are due to axial and torsional displacements 

between layers (say layers k and k+1) and an equivalent strain vector is defined 

with two components: 

 Tkk

x

k

i   (66) 

with 

      

 k

x

k

x

k

kkk

x

r

uu





 







1

1

 (67) 

where  ku  and k

x  are the longitudinal displacement and torsional rotation of 

layer-k cross section, respectively; and   is the angular coordinate at the interface 

cross section, as shown in Figure 10. 

 

Figure 10: Angular Coordinate φ at the Interface. 

For a linearly elastic model, the constitutive relation at the interface material 

above layer- k  results in 


























































k

k

xk

ck

k

x

k

c

k

c

k

k

xk

i k
k

k

 










I

0

0
  (68) 
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

z

y layer k
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where 
k

ck  is associated to contact stiffness between layers k and k+1; and 
k

x  and 

k

  are contact stress components along the longitudinal and circumferential 

directions, respectively. 

Slip condition between layers is modeled by imposing a limit value on the 

shear stress (  ) at the interface material, as described in section 2.8. This is 

obtained by using a suitable constitutive model, according to one of the yield-type 

functions presented in Table 1, in section 2.9. Thus, the constitutive relation for 

interface k  results in 

k

i

ep

c

k

i k    (69) 

where 
k

i  and 
k

i  are as in Eqs. (68) and (66), respectively; and the nonlinear slip 

modulus (
ep

ck ) is obtained from Eq. (65).  

Thus, considering the strain energy due to shearing at the interface material, 

one obtains 

dSk

i

k

i
S

T
k

i
γ

2

1
  (70) 

 Substitution of the expressions for 
k

i  and 
k leads to 

     


 ddruurk k

x

k

x

kkep

c

k

i

21221
2

002

1
 




 (71) 

The variation of the interface strain energy is: 

         


 ddruuuurk k

x

k

x

k

x

k

x

kkkkep

c

k

i
 


11211

2

00



, (72) 

which can be rewritten in the following compact matrix form 

uBBu 




  



 ddkr k

i

ep

c

k

i

k T

i

2

00



 (73) 

The stiffness matrix associated to each interface material between layers is  




ddkr k

i

ep

c

k

i

k

i

T

BBK 
2

00



 (74) 

with 
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 
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




B

 (75) 

where i  are the Hermitian polynomials given in Eq. (23). The incremental 

displacement vector, for element interface k , in the local element system is given 

by 



1

2

1

121

1

2

1

1

21

1

2

1

2

1

2

1

1

1

1

1

1

222111



 



kkkk

zyx

k

zyx

k

zyx

k

zyx

kkT

kkkkkk

kkkkkk

uu

uu





u

 (76) 

In a linear-elastic slip model, with no damage in the interface material, the 

stiffness matrix is obtained analytically, as shown in Appendix B.4. However, in 

models with slip condition between layers, the stiffness matrix is obtained from 

the integral form in Eq. (74), which must be solved numerically. 

2.11.  

Transverse Displacement Compatibility  

At any spatial configuration, all element layers share the same axis, 

allowing slip between layers in axial and circumferential directions only, but 

requiring compatible transverse displacements. In the present work, this constraint 

condition is applied by using the penalty method for simplicity, considering 

equality constraints. By this method, two degrees-of-freedom are physically 

linked through an elastic member, with the constraint condition being imposed 

numerically. The choice of the appropriate value for the elastic constant relies on 

a numerical trial procedure. Thus, if any two degrees-of-freedom ( iu  and ju ) are 
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linked by a spring of stiffness pk , the strain energy due to the relative 

displacement, to be added to the problem variational indicator, is given by 

duuuk ij

p

u

2)(
2

1
 

  (77) 

For a “large” penalty parameter k
p
, the constraint condition is “numerically” 

imposed as   approaches to zero. A penalty matrix is then obtained, by means 

of the Principle of Virtual Work, from 

   duuuuuk ijij

p

u
 

   (78) 

that results in the following penalty matrix (
pk ) associated to the vector ( pu ): 




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
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
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i

p
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u

u

kk

kk
uk    and    (79) 

The choice of the penalty parameter pk  is generally left to numerical 

investigation. In the present study, this parameter has been taken to be equal to the 

largest numerical value amongst all terms in the element stiffness matrix. 

For the multilayer pipe beam element, the transverse degrees-of-freedom 

constraints between any layer ( k ) and the reference layer ( 1k ) are obtained by 

using the following penalty matrix 


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K  (80) 

which is associated to the following nodal incremental displacement vector: 

 kkkkkT

p wvwvwvwv 22

1

2

1

211

1

1

1

1u  (81) 

Special attention must be given to the transformations applied to the penalty 

matrix, as it must be computed in the nodal reference system. As shown in Figure 

11, for two initially aligned elements, in the element system, the penalty stiffness 
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at the adjoining node of adjacent elements “1” and “2” are applied in different 

directions. To overcome this difficulty nodal reference system is used and, in this 

case, stiffness contributions from both elements are applied in a unique direction. 

 

Figure 11: Reference Systems for Penalty Method. 

2.12.  

Element Stiffness Matrix 

The multilayered pipe beam element can be considered as “fully bonded” or 

“unbonded”, depending on the type of interaction between layers. In the unbonded 

element, the stiffness matrix ( eK ) is obtained by using regular FEM assemblage 

process, accounting for the influence of each layer and interface. The element 

penalty matrix ( pK ) is referred to each node reference system and is obtained by 

using the same procedure. After the assembly process, the element stiffness 

matrix ( eK ) is of order layerslayers nn 1414  . In the fully bonded condition, there is 

no contribution of interface and penalty matrices, and the element matrix is 

obtained by simply adding all layer matrices. In this case the element matrix 

dimension is 1414 . Eq. (82) shows both processes. 

Element System Node System

1

2

1

2
pk1

pk2

pp kk 21 
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 (82) 

where layK  is the element layers stiffness matrix; intK  is the element interfaces 

stiffness matrix; eK  is the element stiffness matrix including all layers and 

interfaces; pK  is the element penalty matrix; A  stands for the assembly process. 

In both cases, static condensation on the generalized degrees-of-freedom for 

shear strains is used to reduce matrix dimension. In this way, eK  matrix is 

partitioned as 

















KK

KK
K

u

uuu

e   (83) 

and, by applying static condensation,  the element stiffness matrix becomes 


e

u

ee KKK   (84) 

where 

uueuu

u

e 


KKKKKK
1  and   . (85) 
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3.  

Fluid Loads 

In a submerged pipeline various types of loadings due to internal and 

external fluid flows may occur, such as, internal fluid induced vibrations due to 

slugging flow and vortex induced vibrations, respectively. However, in this work 

only the internal fluid weight and hydrostatic (buoyancy) and hydrodynamic (drag 

forces) loads due to the external fluid are considered in the multilayered element 

formulation. Figure 12 shows the equivalent nodal forces in four possible relative 

positions of a two node pipe beam element in contact with the external fluid: (a) 

totally dry; (b) partially submerged with first node inside the fluid; (c) partially 

submerged with last node inside the fluid; and (d) totally submerged. 

Additionally, the following conditions may occur: open pipe, closed pipe with 

internal fluid and closed empty pipe. 

 

Figure 12: Fluid Load on a Beam Element. 

3.1.  

Fluid Weight and Buoyancy Forces 

From equilibrium conditions, the equivalent nodal forces due to internal 

fluid weight and external fluid buoyancy are obtained. Equations (86) and (87) 

X
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present these equivalent nodal forces associated to each element layer for the open 

and closed pipe conditions, respectively. 

2211      and       k

e

kk

e

k AFAF   (86) 
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 (87) 

where 
kk FF 21  ,  are the layer-k equivalent nodal forces; ei   ,  are the internal and 

external fluid densities, respectively; ei AA  ,  are the internal and external areas, 

respectively; 
kA  is the layer-k cross section area;   is the element length; and 

21  ,  are coefficients to transfer the uniform distributed loads to element nodes, 

as given in Table 2. 

Table 2: Distributed Loads Proportional Coefficients. 

Element relative position 1 2 

(a) Totally dry 0  0  

(b) Partially submerged 

(node 1 inside fluid) 

















2
1 ss  

2

2

1











 s  

(c) Partially submerged 

(node 2 inside fluid) 

2

2

1











 s  
















2
1 ss  

(d) Totally submerged 
2

1
 

2

1
 

Where s  is the submerged length as shown in Figure 12. 

3.2.  

Hydrodynamic Loads 

Fluid-structure interaction is generally characterized by drag and inertia 

(added mass) forces, obtained by using Morison’s equation (Morison et al., [39]), 

which is a semi-empirical equation for the hydrodynamic forces on a cylinder in 

oscillatory flow. This equation can be used with confidence in structural analysis 

of risers, provided the pipe diameter is at least one order of magnitude smaller 
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compared to the wavelength of the oscillatory flow. For a moving pipe in an 

oscillatory flow, Morison’s equation is represented by three components as 

follows: 

(1) Transverse drag forces: 

 nfnnfnDnfDn DC uuuuf   
2

1
 (88) 

(2) Tangential drag forces: 

 tfttftDtfDt DC uuuuf   
2

1
 (89) 

(3) Transverse inertia forces: 

  nMffnMfI C
D

C
D

uuf  1
44

22







  (90) 

where f  is the fluid mass density; D  is the hydrodynamic diameter of the pipe; 

DnC  and DtC  are the normal and tangential drag coefficients, respectively, which 

depend on the pipe cross section geometry and roughness  (for a bare cylinder: 

0.1DnC  and 0.0DtC ); MC  is the transverse inertia coefficient; fnu  and nu  

are the fluid and structure velocity vectors, respectively, both normal to the pipe; 

ftu  and tu  are the fluid and structure velocity vectors, respectively, in the pipe 

tangential direction; fnu  and nu  are the fluid and structure acceleration vectors, 

respectively, both normal to the pipe centerline. 

The total hydrodynamic load per unit length is the vector sum of Eqs. (88) 

to (90). In the multilayered element formulation, the nodal equivalent 

hydrodynamic forces are obtained assuming a linear variation along the length, 

i.e.: 

  211 hhh fff 





















  (91) 

where 
1

hf  and 
2

hf  are the hydrodynamic load per unit length at nodes 1 and 2, 

respectively, obtained from Eqs. (88) to (90);   is the local coordinate along 

element axis; and   is the element length. 

The distributed loading in Eq. (91) is then transferred to the nodes in the 

external layer degrees-of-freedom, by using the element interpolation matrix, i.e.:  
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dh

T

h fHF 


0
 (92) 

where hF  is the nodal vector of hydrodynamic loads applied to the external layer. 
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4.  

Implementation of the Three-Dimensional Multilayer Pipe 

Beam Element 

The three-dimensional multilayered element formulation has been 

implemented in a C++ code using object-oriented techniques, such as proposed by 

Lages et al. [33]. The program uses some of the algorithms presented by Leon et 

al. [34], together with the HHT time integration algorithm (Hilber et al. [35]), to 

solve the nonlinear dynamic equilibrium equations. Details of this implementation 

are presented in the following sections. 

4.1.  

Global Equilibrium Equation 

The present formulation includes large displacements and nonlinear 

constitutive relations within the interface material. Numerical solutions are 

obtained using an incremental procedure for equilibrium. The global dynamic 

equilibrium equation is presented in the following matrix form: 

F R U K U D U M 
tΔttΔttΔttΔttΔttΔtt      (93) 

where M , D  and K  are the structure global mass, damping and stiffness 

matrices at time tt  , respectively, obtained from the element matrices through 

an assemblage process; U  and U  are the global nodal acceleration and velocities 

vectors; U  is the global incremental displacements vector; R  is the global 

external loading vector; and F  is the structure global internal forces vector. 

A step-by-step procedure has been implemented considering 
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 

UUU

UUUU

UUUU



























ttt

tttttt

tttt

tt

tt

 

    

   









1

1
2

111
2

 
(94) 

where t  is the time increment; U
t  is a known solution at time t;   and   are 

constants that define the time integration algorithm. In the case of HHT algorithm, 

we have: 

 









2

1

1
4

1 2

 

(95) 

with 03/1   . 

4.2.  

Element Updating Procedure 

The nonlinear equilibrium equation, shown in Eq. (93), is solved by using 

an iterative and incremental algorithm. Thus, at each equilibrium iteration all 

stiffness matrices and internal force vectors, for each element, must be updated. In 

the following sections, the formulation for large displacements and rotations is 

presented. An updating procedure applied to all multilayered pipe beam element 

matrices is also detailed. It uses the element incremental displacements and 

rotations, obtained in the solution process at each iteration-i, to update all element 

reference systems. The procedure is performed according to the following steps: 

Step 1. Nodal positions and direction cosines of the element (straight axis 

direction) are updated from the incremental displacements ( i
u ) obtained 

in the previous iteration; 

Step 2. Element and nodal transformation matrices are updated: 

Step 2.1. Nodal rotation matrices (
)(

1

ik

nR  and 
)(

2

ik

nR ), for each layer, are updated 

from incremental rotations at each node: nodal incremental rotation 

matrices (
)(

1

ik

incR  and 
)(

2

ik

incR ) are obtained from the rotation increments 
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using Eq. (2). Previous nodal rotation matrices are pre-multiplied by 

each of these matrices, i.e., 

)1(

2

)(

2

)(

2

)1(

1

)(

1

)(

1    and     ik

n

ik

inc

ik

n

ik

n

ik

inc

ik

n RRRRRR  (96) 

Step 2.2. The element transformation matrix (
i

eR ) is obtained from the straight 

element axis (defined by current nodal point positions) and from nodal 

rotation matrices: the first row in the element rotation matrix ( i

eR ) is 

given by the updated direction cosines of the element (vector X ); the 

second row (vector Y ) is given by averaging the second rows of the 

reference layer nodal matrices 
)(1

1

i

nR  (vector 
1

1y ) and 
)(1

2

i

nR  (vector 
1

2y ); 

and the third row (vector Z ) is obtained from the cross product 

between the first and second row ( YXZ  ); 

Step 3. Relative displacements vectors (
i

ru  and 
i

pu ), in the local element and 

nodal reference systems, respectively, are then calculated. 

Step 3.1. Relative displacements between layers are obtained as follows: 

Step 3.1.1. First, the relative axial displacement of the reference layer 

(innermost layer) is computed subtracting its updated deformed 

length ( i ) from element initial, non-deformed, length ( 0 ): 

0  ii
 (97) 

Step 3.1.2. Then, nodal relative displacements between each layer ( k ) and the 

reference layer ( 1k ) are computed in the global reference 

system. This operation must be done individually, for each node: 

layers

kkkk Nk   to2      ,  and  1

222

1

111  uuuuuu  (98) 

Step 3.1.3. The nodal relative displacements for each layer are transferred to 

local element system and also to the nodal reference systems: 

   

   
layers

ki

n

k

n

ki

n

k

n

ki

e

k

e

ki

e

k

e
Nk

TT

TT

  to2        
 and 

 and 

222111

2211













uRuuRu

uRuuRu
 (99) 

Step 3.2. Nodal relative rotation between each layer and the element straight 

axis are obtained from the nodal transformation matrices of each layer 

and from the element transformation matrix in the reference 
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configuration. According to Crisfield [21], these rotation angles can 

be obtained from the following expressions 

 
 
 

 
 
  YxXy

XzZx

ZyYz

YxXy

XzZx

ZyYz

kkk

z

kkk

y

kkk

x

kkk

z

kkk

y

kkk

x

222

222

222

111

111

111

sin2

sin2

sin2

      and     

sin2

sin2

sin2

























 (100) 

Step 3.3. The vector of relative displacements (
i

ru ) is assembled on the local 

system of the element from the nodal relative displacements (
k

e1u  

and 
k

e2u ) and rotation vectors (
k

1θ  e 
k

2θ ) of each layer. For a 

given layer-k, vector 
k

ru  is obtained as: 

   

   

   

   

    3  to1,

3  to2,

3  to1,

3  to1,

29

26

127

13

1

















ju

juu

uu

ju

juu

k

j

k

jr

k

je

k

jr

ik

e

k

r

k

j

k

jr

k

je

k

jr





  (101) 

Step 3.4. The vector of relative displacements (
i

pu ), used in the calculation of 

penalty internal forces, is assembled. This vector refers to relative 

displacements in two different reference systems, one for each node, 

and is assembled from the nodal displacements vectors of each layer 

k

n1( u  and 
k

n2u ). The vector 
k

pu , for layer-k, is obtained as follows: 

   

    3  to1,

3  to1,

126

1





 juu

juu

k

n

k

jp

k

jn

k

jp
 (102) 

Step 4. Internal force vector contributions are calculated in their corresponding 

reference systems and then transferred to global coordinate system as 

follows: 

i

pp

i

p

i

rint

i

int

i

rlay

i

lay

uKf

uKf

uKf







 (103) 

Step 4.1. Total internal force vector, in the global reference system, is thus 

obtained  
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     i

p

i

n

i

int

i

lay

i

e

i

g fRffRf   (104) 

where i

layf  is the element internal forces vector due to deformation at 

layers; 
i

intf  is the element internal forces vector due to deformation at 

interfaces; 
i

pf  is the element internal forces vector due to penalty 

method; and 
)(i

eR  and 
)(i

nR  are transformation matrices (with same 

dimension as the element total number of degrees-of-freedom) 





















































i

n

i

n

i

n

i

n

i

n

i

e

i

e

i

e

i

e

i

e

2

2

1

1

0000

0000

0000

0000

0000

   and   

0000

0000

0000

0000

0000

R

R

R

R

R

R

R

R

R

R 



 (105) 

where i

eR  and i

nR  are as defined in steps 2.1 and 2.2. 

Step 5. The element stiffness matrix (
i

eK ) and penalty matrix (
i

pK ) are then 

assembled in their respective local coordinate systems, from the matrices 

of each layer and interface, and then transferred to the global system to 

obtain )( i

gK , as follows: 

       i
n

i

p

Ti

n

i

e

i

e

Ti

e

i

g RKRRKRK   (106) 

The mass and damping matrices are also assembled in the element 

reference system from each layer contribution and then transferred to the 

global reference system, as follows: 

   

   i
e

i

e

Ti

e

i

g

i

e

i

e

Ti

e

i

g

RDRD

RMRM




 (107) 
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5.  

Pipe-Soil Interaction 

In practical riser analysis, since part of the riser lies on the seabed, an 

appropriate representation of riser-soil interaction is very important. The exact 

representation of this problem is not an easy task due to the number of variables 

and uncertainties involved in the problem definition. These are related to soil non-

linear stiffness, trench formation and soil resistance during cyclic loading. In the 

context of the Finite Element Method, a simple and efficient approach is to 

assume the pipeline lying on a “mattress of independent nonlinear springs”, acting 

on the element nodes, as shown in Figure 13. The characteristics of these springs 

depend on several factors, such as the type of soil considered, diameter of the 

riser, and level of pipe embedment in soil. 

 

Figure 13: Soil Springs. 
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5.1.  

Normal Reaction 

In the present work, the soil reference system is defined with the z-axis 

normal to the soil surface at the contact point. The x-axis lies on the plane defined 

by the normal and the element axis and the y-axis in the lateral direction. The 

contact conditions are characterized by the relative displacements in the normal 

(uz), longitudinal (ux) and lateral (uy) directions, as shown in Figure 14. 

 

Figure 14: Pipe-Soil Relative Displacements. 

A bilinear model is used to represent the normal contact force (fn) between 

soil and pipe, as shown in Figure 15. 

 

Figure 15: Normal Contact Model. 

The normal contact force is obtained from: 












0if0

0if,

n

nnn

n
u

uuk
f  (108) 

where nf  is the normal contact force; nk  is the normal soil stiffness; nu  is the 

relative displacement between the soil surface and the pipe in the normal direction 

(a negative value means penetration of pipe in soil). 

uy

ux

fn

uz≡ un

fn

un

kn
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5.2.  

Longitudinal and Lateral Reactions 

As shown in Figure 16, longitudinal and lateral contact conditions are 

driven by two different phenomena: when a pipe moves in the lateral direction, 

tangent to the soil surface, the soil cohesion may brake and a portion of soil is 

dragged by the pipe wall. On the other hand, for relative movement in the 

longitudinal direction distributed friction forces arise due to contact between the 

soil and external pipe wall. The exact interaction between these two phenomena is 

difficult to formulate. In this work, the problem is solved by assuming two 

simplified models: 1) full interaction (coupled model); and 2) independent friction 

model for each direction (uncoupled model), as described in the following 

sections. 

 

Figure 16: Lateral and Longitudinal Contact. 

5.2.1.  

Coupled Friction 

This model assumes full interaction between friction forces in the 

longitudinal and lateral directions by considering an “equivalent” force that 

follows the model: 

Lateral

Axial
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Figure 17: Pipe-Soil Friction Model. 

where nff   and u  are the limit force and displacement that defines the 

elastic regime, respectively;   is the friction coefficient; nf  is the normal contact 

force defined in Eq. (108); 

Thus, within the elastic regime, friction forces are given by: 

kuf   (109) 

where f  is the vector of friction forces; u  is the vector of relative displacements 

between pipe and soil: 











y

x

u

u
u  (110) 

and k  is the frictional stiffness matrix, given by: 














y

x

k

k

0

0
k   (111) 

with xk  and yk  being the contact stiffness in the longitudinal and lateral 

directions, respectively, defined as: 

y

y

x

x

u

f
k

u

f
k yx








    and    (112) 

Within the inelastic regime, friction forces are determined by using the 

following yielding-type function: 

  0 fff  (113) 

where 
22

yx ff f  with xf  and yf  being the friction forces in the longitudinal 

and lateral direction, respectively. 

f

u

unloading

f

u

f
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According to Simo and Hughes [31], this type of nonlinear problem can be 

characterized by means of the following set of equations: 

 
  0   ,ˆ 





 

f
fru

uukkuf

uuu

d

din

ine

ine

 

(114) 

where u , e
u  and in

u  are the vectors of total, elastic and inelastic displacements; 

f  is the vector of friction forces; in
u  is the vector of inelastic displacement 

increments;   is the inelastic displacement increment parameter to be determined; 

 fr̂  is a unit vector that indicates the “yield” direction and is given by: 

 













y

x

f

f

f
fr

1
ˆ  (115) 

The loading or unloading condition is expressed by the following 

conditions: 

0

0

0













 (116) 

An additional condition, referred to as consistency condition, is necessary to 

make sure that the friction forces are confined to the yield criteria (113) 

throughout loading, i.e.: 

0  (117) 

Thus, the associated mathematical problem consists in: given  n

in

nn fuu ,,  

and 1nu , obtain 
in

n 1u  and 1nf . The solution for this problem is obtained by using 

a backward Euler scheme. Thus, Eqs. (114) can be rewritten in the following 

discrete form: 

 

1

1

1

1

ˆ
















n

in

n

in

nn

inin

n

in

n

nn

ru

ffuukff

uuu

uuu



 (118) 

This problem is solved in two steps. First, an elastic displacement increment 

is assumed to obtain the following trial state: 
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 

ff

uu

ukfuukf

























11

1

11

nn

in

n

in

n

nn

in

nnn



 (119) 

The trial state positiveness indicates if the displacement increment is in the 

elastic or inelastic regimen, according to the following criterion 














0 :increment inelastic   =>  0

0    :increment elastic   =>  0
1




n

 (120) 

Under inelastic increments, evolution equations are expressed in terms of 

the trial state and the inelastic displacement increment modulus ( ), in the form: 

11

111

ˆ

ˆ













n

in

n

in

n

nnn

ruu

rkff




 (121) 

Considering the consistency condition (117), and according to Eq. (120), i.e. 

0 , one gives 

0ˆ
1 








  frf

f
 T

n

T

d

d
  (122) 

which can be rewritten in the form 

0ˆ
1   fr

T

n  (123) 

Combining the third and fourth Eqs. (118) and (123), one obtains: 

  0ˆˆ
11   n

T

n rukr   (124) 

Solving for  , results in: 

11

1

ˆˆ

ˆ



 


n

T

n

T

n

rkr

ukr
  (125) 

The solution procedure is geometrically represented in Figure 18. Consider 

the yield surface at the elastic trial state. The elastic trial contact forces lies 

outside the admissible domain (i.e. outside the elastic domain). Once the 

parameter   is determined, Eq. (121) is used to bring the soil state back to the 

admissible domain, i.e. lying on the yield surface. This procedure is called radial 

return mapping algorithm (Wilkins [32]). 

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 0912560/CB



Chapter 5. Pipe-Soil Interaction 61 

 

 

Figure18: Radial Return Mapping. 

5.2.2.  

Uncoupled Friction 

In this proposed model, friction forces components are independently 

calculated, assuming the one-dimensional nonlinear model shown in Figure 17. 

Thus, within the elastic regime, friction forces are given by: 

kuf   (126) 

where k  is the lateral or longitudinal contact stiffness, given by: 





u

f
k   (127) 

Within the inelastic regime, friction forces are assumed to follow yield-type 

function: 

  0 fff  (128) 

Using the same approach employed in the coupled model, Eqs. (114) are 

rewritten for the one-dimensional case in the form: 

 
  0   ,sign 





  fu

uukkuf

uuu

df

din

ine

ine

 (129) 

where u , eu  and inu  are the total, elastic and inelastic displacements in the 

friction force direction; f  is the friction force; k  is the elastic contact stiffness; 

and   is the inelastic displacement increment parameter to be determined; 

From Eq. (129), the trial elastic state is obtained by assuming an elastic 

displacement increment: 

fy

fn

fx

*

1nf

1
ˆ
nr

1
ˆ
nrk
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 

ff
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ukfuukf

nn
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nnn
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



















11

1

11



 (130) 

In the inelastic regime, the contact force 1nf  is expressed in terms of the 

trial force 

1nf  and the inelastic displacement increment   as follows: 

 
   

 11

11

111

sign 















nn

in

n

in

n

in

nn

in

nnn

fkf

uukuuk

uukf



 (131) 

Therefore, since 0 , the actual state is written, in view of Eq. (131), as 

 

 

0

sign

sign

11

11

111

















ff

fuu

fkff

nn

n

in

n

in

n

nnn







 (132) 

Now the above problem is solved explicitly in terms of the trial elastic state 

by the following procedure. From first Eq. (132) and the identity  fff sign , 

the following expression is obtained:  

     11111 signsignsign 







  nnnnn fkffff   (133) 

Collecting terms, Eq. (133) results: 

     





  1111 signsign nnnn fffkf   (134) 

Since 0  and 0k , the term in brackets is necessarily positive, what 

requires that 

   

  11 signsign nn ff  (135) 

and 



  11 nn fkf   (136) 

From Eqs. (132) and (136) the yield criterion 1n  is written as 

0111  





  kfkf nnn   (137) 

which solved for   results in 
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k

n



 1
 . (138) 

The parameter   is then used in the first two Eqs. (132) to update the soil 

state. 

5.3.  

Soil Transformation Matrix 

In a Finite Element Analysis of pipelines, soil influence is considered in the 

formulation by adding the soil stiffness matrix and reaction force vectors to the 

element stiffness matrix and force vectors. These terms are numerically obtained 

in the soil local reference system and then, transferred to the global coordinate 

system by using the soil transformation matrix. This matrix is obtained by 

considering the unit vectors ( sx , sy  and sz ) that defines the soil local reference 

system in a certain contact point, as shown in Figure 19, for a general case 

representing an irregular seabed. 

 

Figure 19: Soil Reference System. 

The soil reference system is obtained from the unit vector ( n ), normal to the 

soil in the contact point, and from the unit vector ( t ), tangent to the deformed 

pipe, as shown in Eq. (139). Thus, the following vector definitions are obtained 

n

t

zs=n

t

xs

ys
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sssss zyxnz
tn

tn
y 




   and     ,  (139) 

where sx , sy  and sz  are the unit vectors of the soil reference system. 

5.4.  

Numerical Implementation 

In a riser analysis with the Finite Element Method, the equilibrium equation 

is solved using an iterative and incremental algorithm, due to the nonlinear 

characteristics of the problem. Thus, at each iteration the soil state at each element 

node must be updated. The procedure to calculate the soil stiffness matrix and 

reaction forces vector is presented as follows: 

Step 1. Get the current nodal position ( nnn zyx ,, ); 

Step 2. Get the seabed elevation ( sz ) and normal vector ( n ) at current node 

position: 

   nnsnnss yxyxZz ,   and   , nn   (140) 

where  yxZs ,  is a function that defines the seabed geometry;  yxs ,n  is 

the unit vector normal to the surface defined by  yxZs , . 

Step 3. Check if the pipe element node is in contact with the soil: 

Step 3.1. Obtain the penetration 

  znsn nzzu   

Step 3.2. If ( 0nu ) then proceed to step 4 - contact is achieved. 

Step 3.3. Else, no contact condition 

0f

0k





s

s
 

where sk  is the soil stiffness matrix; sf  is the soil reaction forces vector; 

and nu  is the element node penetration in soil. 
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Step 4. Obtain the soil transformation matrix ( sR ) using Eq. (139). The first row 

of sR  is the vector sx , the second row is the vector sy , and the third is 

;sz  

Step 5. Calculate the normal contact stiffness ( nk ) and force ( nf ): 

nnncnn ukfkk     and     (141) 

where nk  is the normal soil stiffness per unit length; c  is the length of the 

element that is in contact with the soil. 

Step 6. Calculate longitudinal and lateral forces and stiffness: 

Step 6.1. From nodal displacements in global system ( u ) obtain it in local 

coordinate system ( su ): 

uRu  ss  (142) 

Step 6.2. Calculate the elastic limit force ( f ) and stiffness in each direction: 

y

y

y

x

x
xnyynxx

u

f
k

u

f
kffff








    and    ,   ,   (143) 

where xf  and yf  are the limit forces in the longitudinal and lateral 

directions, respectively; xk  and yk  are the contact stiffness in the 

longitudinal and lateral directions, respectively. 

Step 6.3. Calculate the friction forces ( xf  and yf ) in each direction using first 

Eq. (132); 

Step 7. Assembly soil stiffness matrix and forces vector in the local system: 





































n

y

x

s

n

y

x

s

f

f

f

k

k

k

 fk   and  

00

00

00

 (144) 

Step 8. Obtain stiffness matrix and forces vector in the global system by 

transferring them from local coordinate system: 

 s

T

ss

T

ssss fRfRkRk     and    (145) 
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6.  

Numerical Tests 

The multilayer pipe beam element formulation has been implemented in a 

computer program and a number of analyses were carried out to verify the 

element’s performance in representing the behavior of risers in statics as well as 

in dynamics. Sample solutions considered were classified in three categories: 

 a) Models with a single layer: for verification purpose only; 

 b) Models with multiple layers: to provide insights into model capabilities, 

especially when considering simple examples;  

 c) Applications of multilayer element simulations to actual riser structures, 

which provides some numerical comparisons to conventional solutions. 

6.1.  

Single Layer Models 

6.1.1.  

Cantilever Beam Subjected to Pure Bending 

This example has been used by several authors [20 - 22, 36] to verify the 

numerical behavior of three-dimension beam elements, under severe geometric 

nonlinearities involving large displacements and rotations. A cantilever beam, 

initially straight under constant in-plane bending is considered in this example, as 

shown in Figure 20. 
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Figure 20: Cantilever Beam Under Pure Bending. 

Analytical solutions as function of the applied load My and beam geometric 

and material parameters for rotation (), horizontal (u) and vertical (v) 

displacements, at the tip of the beam, is given as (Almeida et al. [36]): 

 

  








cos1

1
sin















L
w

Lu

EI

ML

 (146) 

Also, an analytical expression for the applied bending moment that curls the 

beam into a full circle is given by 
L

EI
M

2*  . In this analysis, the load is applied 

in ten equal increments with numerical convergence being achieved in up to eight 

iterations per increment. The beam is modeled considering a uniform mesh with 

five elements. Figure 21 shows some deformed configurations for the beam, at 

various load intensities. 

L 

z
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Figure 21: Cantilever Beam: Deformed Configurations. 

Figure 22 presents a comparison of tip displacements numerically obtained 

results to the analytical solution provided in Eqs. (146). A good agreement 

between these in-plane results is reported. 

 

Figure 22: Normalized Displacements at Beam Tip. 

6.1.2.  

Composite Column Subjected to Eccentric Axial Loading 

This example considers solutions for the buckling of a column in two 

eccentric segments, subjected to an axial eccentric load. Connection between the 
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two segments and the eccentric load are modeled using beam elements with high 

rigidity parameters. The objective is of this analysis is to compare solutions for tip 

displacements and column configurations for various load intensities. The 

composite column was modeled using 22 finite elements, two representing the 

rigid connections at the middle and top of the column, and 10 equal beam 

elements for each segment. Column geometric and material details are shown in 

Figure 23 and the obtained numerical results for this model are presented in 

Figures 24 to 26. Compression loading was applied in 100 equal increments. 

Figure 24 presents deformed configurations of the column for different loading 

levels. From these results, bending moment distribution along the column was 

evaluated and compared to numerically obtained results for P=0.2kN, as shown in 

Figure 25. Figure 26 shows normalized displacements measured at applied load 

node. The results are in good agreement with the solutions presented by Nunes et 

al. [27] and Albino [28].  

 

Figure 23: Composite Column Under to Eccentric Axial Load. 
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Figure 24: Composite Column: Deformed Configurations. 

 

 

Figure 25: Bending Moment Along the Composite Column, for P=0.2 kN. 
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Figure 26: Normalized Displacement at the Top of the Composite Column. 

6.1.3.  

Out-of-Plane Loading to a Circular Cantilever Beam 

This example has been considered by many authors such as Crisfield [21], 

Bathe and Bolourchi [22], Simo and Vu-Quoc [29] and Cardona and Geradin [30] 

in the evaluation of 3D general beams. It presents a useful testing to full 3D non-

linear behavior of beam elements, including bending, torsion and transverse shear. 

The analysis consists of considering a curved pipe beam over 45 degrees, with 

100in constant radius and under transverse loading, as shown in Figure 27. The 

beam is modeled using 8 equally spaced elements. In the analysis, the load factor 

() considered varied from 0 to 7.2, in 20 equal increments.  
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Figure 27: Circular Cantilever Beam Under Transverse Loading. 

Numerical results for this analysis are shown in Figures 28 and 29. Figure 

28 presents deformed configurations for three different loading levels, and Figure 

29 shows displacements at the tip of the beam, which are compared to some other 

available results. 

 

Figure 28: Circular Cantilever Beam: Deformed Configurations. 
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Figure 29: Normalized Displacements for the Circular Cantilever Beam. 

Following Crisfield [21], we present a comparison of displacements at the 

free end of the beam in Table 3, including solutions from Albino et al. [36] and 

those obtained in this work. Small differences, lower than 2% in the numerical 

results, are observed. 

Table 3: Comparison of Displacements at the Free End of the Beam. 

Author(s) 

Tip position for each load level (initially at: 29.9, 70.71, 0.00) 

 = 3.6  = 5.4  = 7.2 

X Y Z X Y Z X Y Z 

Present Work 22.29 58.79 40.20 18.57 52.25 48.54 15.76 47.15 53.53 

Albino et al. [36] 22.20 58.80 40.20 - - - 15.60 47.10 53.60 

Crisfield [21] 22.16 58.53 40.53 18.43 51.93 48.79 15.61 46.84 53.71 

Bathe and Bolourchi [22] 22.50 59.20 39.50 - - - 15.90 47.20 53.40 

Simo and Vu-Quoc [29] 22.33 58.84 40.08 18.62 52.32 48.39 15.79 47.23 53.37 

Cardona and Geradin [30] 22.14 58.64 40.35 18.38 52.11 48.59 15.55 47.04 53.50 

6.1.4.  

Towing of a Pipeline in Contact With the Seabed 

The objective of this example is to verify the capabilities of the pipe-soil 

interaction models presented in section 5. The model consists of a 350m long 

pipeline being towed 300m, in the lateral direction, in contact with an irregular 

seabed, as shown in Fig. 30. The pipeline is attached to two towing boats with two 

cables with varying length (80m to 128m), so that the pipe can be lowered to get 

in contact with the seabed during the simulation.  
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Figure 30: Towing of a Pipeline. 

The pipe was modeled with a uniform mesh of 100 elements with the 

geometrical and material properties presented in Table 4. The soil properties used 

to represent the contact between the pipeline and the seabed is presented in Table 

5. 

Table 4: Towed pipeline properties. 

External diameter (m) 0.26 

Internal diameter (m) 0.20 

Young modulus (kN/m²) 1.44E+05 

Specific weight (kN/m
³
) 26.86 

 

Table 5: Soil properties for towed pipeline. 

Longitudinal friction coef. - x 0.3 

Lateral friction coef. de - y 0.5 

Longit. elastic limit - ulx (m) 0.03 

Lateral elastic limit - uly (m) 0.26 

Normal stiffness - kn (kN/m²) 100 

Friction model uncoupled 

 

The analysis considers an irregular seabed with the geometry defined by Eq. 

(147). 

      bycxcybxayxz  cossin, , with mcbma 04.0  and  8   (147) 

The towing process was simulated in an incremental static analysis with 110 

steps. The first 10 increments were used to lay down the pipeline on the irregular 

seabed. The displacements of the towing boats were applied in the following 100 

increments. Figure 31 shows a sequence of snapshots of the deformed 

500 m

350 m
80 - 128 m80 - 128 m
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configuration of the pipeline during the towing simulation. It is possible to 

observe that the pipeline accommodates to the seabed geometry. This shows the 

robustness of this simple model to represent such a complex problem. 

 

Figure 31: Deformed Configuration of the Towed Pipeline. 

6.2.  

Multilayered Beam Models 

6.2.1.  

Two Layer Pipe Beam Subjected to Axial Loading 

A two layer straight beam, restrained at one end at inner layer is loaded by 

an axial force F , applied at the free end of outer layer was considered in this 

example. The beam was modeled with a finite element mesh containing 15 

uniform elements, using the material and cross section geometrical properties 

presented in Figure 32. The Young modulus for each layer is set so that both 

layers would have the same axial stiffness, i.e. oointint AEAE  . Thus, the interlayer 

shear stress distributions along the beam are symmetric with respect to the beam 

mid-section. 

Step 0

Step 110
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Figure 32: Two Layer Pipe Beam Under Axial Loading  

Linear Elastic Slip: 

In this analysis a linear elastic slip model is considered and an axial force 

kNF 1000  is applied. Figures 33 and 34 show obtained numerical results for 

the axial displacements and contact stresses at the interface between layers, 

respectively, as compared to analytical solution proposed by Aguiar and Almeida 

[18] which is presented in Appendix A.1. A good agreement between numerical 

and analytical solution results is observed.  

 

Figure 33: Axial displacements – Linear Elastic Slip. 
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Figure 34: Longitudinal Contact Stresses at the Interface – Linear Elastic Slip. 

 

Slip With Static Friction: 

In this analysis a slip model with contact stiffness 
36 /10 mkNkc   and limit 

contact stress 
2/0.200 mkN , using a bi-linear slip model, is considered. The 

objective of this analysis is to compare the numerical results with the 

corresponding theoretical limit value for axial load which is given by 

kNLrF int 65.8792    . The total loading was applied in 45 equal steps, 

starting at kN0.490 , which corresponds to the elastic slip limit, approximately. 

The contact stress distribution along the beam, for some load levels, is presented 

in Figure 35. From these results it is possible to notice the adhesive material 

rupture propagation, starting from both ends of the beam and preserving 

symmetry. Figure 36 shows the resulting residual contact stresses obtained after 

load FF 95.0  has been applied and then removed. The nonlinear nature of the 

numerical response can also be observed in the load-end displacement plots for 

both layers, as presented in Figures 37 and 38. 
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Figure 35: Contact Stresses at Interface – Slip with Static Friction. 

 

Figure 36: Residual Contact Stresses at Interface After Unloading – Slip With Static 
Friction. 
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Figure 37: Applied Load vs. Axial Displacements at the Free End of Each Layer - Slip 
With Static Friction. 

 

Figure 38: Applied Load vs. Relative Axial Displacement at the Beam Tip - Slip with Static 
Friction. 

6.2.2.  

Two-Layer Cantilever Beam 
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beam into a complete circle. The parameter  eqEI  is the equivalent homogeneous 

beam bending stiffness, obtained from adding the inner and outer layer bending 

stiffness, i.e.:   ooiieq IEIEEI  .  

Considering a perfect binding condition between layers, one obtains the 

analytical stress distribution along the pipe thickness from the expression: 

 eq

yk

k
EI

zME
  (148) 

where k is layer index. 

 

Figure 39: Two-Layer Cantilever Beam. 

Figure 40 shows the bending moment distribution along each element layer 

considering the same material for both layers ( GPaEE oi 200 ). 

 

Figure 40: Bending Moment at Each Element Layer (One Material). 
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Considering the cross section in the middle of the beam, where pure bending 

is observed for each layer, one observes that the normal stress distribution along 

the pipe wall is linear, as shown in Figure 41. This figure also shows a good 

agreement between the exact solution for perfectly bonded beams, given by Eq. 

(148), and the stresses obtained from numerical bending moments at each layer. 

 

Figure 41: Axial Stress Distribution at Mid-Length Cross Section (One Material). 

If different materials are considered at each layer ( GPaEE oi 2002  ), 

bending moment distributions along the beam is as shown in Figure 42. 

 

Figure 42: Bending Moment at Each Element Layer (Layers with Different Materials). 
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Figure 43: Axial Stress Distribution at Mid-Length Cross Section (Different Materials). 

Figure 44 shows that displacement compatibility at both layers is well 

represented by the analysis results, as displacements at the tip of the beam are the 

same for both layers. Good agreement between numerical and analytical solutions 

is observed. 

 

Figure 44: Normalized Displacements at the Two-Layer Cantilever Beam Tip. 
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6.2.3.  

Two-Layer Cantilever Beam Submitted to Distributed Loading 

The objective of this analysis is to test the multilayered pipe beam element 

under large displacement in static and dynamic loadings. The original model was 

originally proposed by Bathe and Bolourchi [22] for the representation of 3D 

beams in large displacement analysis. In this analysis a two-layer cantilever pipe 

beam under a uniformly distributed load was considered, as shown in Figure 45. 

The beam is modeled using 8 equally spaced elements with the load applied in the 

internal layer nodes, as in a pipe with internal fluid. 

 

Figure 45: Properties for the Two-Layer Cantilever Beam Under Distributed Loading. 

Static solution for the vertical displacement at the beam tip was obtained 

with applied load in 20 equal increments. As shown in Figure 46, numerically 

obtained results are in good agreement with the solution given in Bathe and 

Bolourchi [22].  Since a very high interlayer contact stiffness ( ck ) was 

considered, vertical movements for both layers are equal, and thus, only inner 

layer movements are presented in Figure 46. 
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Figure 46: Beam Tip Displacements – Static Analysis 

The dynamic analysis was performed with a step uniform load 

inlbq /85.2 . A total time analysis of s210215.1   was used, with time 

increments of st 41035.1  . The dynamic response for vertical displacements 

at the tip of the beam inner layer is presented in Figure 47, obtained using the 

HHT time integration algorithm along with the Newton-Raphson iterative scheme. 

As shown, the dynamic response presented in Bathe and Bolourchi [22] presents 

some damping effects, without any further information provided. Thus, 

considering a damping coefficient equals to %0.1 , proportional to the element 

stiffness, as in the Rayleigh proportional damping described by Mourelle [20], the 

model analysis provides a better agreement for the beam transverse amplitude 

results with a very good agreement in period, as shown in the results presented in 

Figure 47. 
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Figure 47: Beam Tip Displacements – Dynamic Analysis 

6.2.4.  

Dynamic Analysis of a Circular Two-Layer Cantilever Beam 

In this analysis, the circular cantilever beam presented in section 6.1.3 for 

static analysis, is studied in dynamics with a two-layer cross section. Beam’s 

geometrical and material properties are shown in Figure 48. The numerical 

analysis intends to evaluate the performance of the multilayered element in 3D 

large displacement dynamic analysis. This model was analyzed under dynamic 

loading by Chan [38], using the conventional homogeneous pipe beam 

formulation. Obtained tip displacements deflections, resulting from a suddenly 

applied load equal to lb300  are plotted in Figure 49 for a total time of s3.0 , with 

a time increment st 002.0  used. Figure 49 shows a good agreement between 

the two-layered pipe beam displacement results and the ones obtained by Chan 

[38]. 
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Figure 48: Geometrical and Material Properties for the Circular Two-Layer Cantilever 
Beam. 

 

 

Figure 49: Circular Cantilever Beam Tip Displacements in Dynamics Analysis. 
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verify the behavior of the multilayer pipe beam element under gravity loading 

combined with external and buoyancy loads. This study was carried out by 

Yazdchi and Crisfield [40] using a 2D pipe beam formulation in static analysis. 

The material and geometrical properties are shown in Figure 50. 

 

Figure 50: Submerged Cantilever Beam. 

The beam was represented using a 20 equal element model under 

concentrate loadings applied to the internal layer node. Static deformed 

configurations obtained for four loading conditions are shown in Figure 51, which 

are in very good agreement with the ones presented by Yazdchi and Crisfield [40]. 

In dynamic analysis, a total time of 30s was considered for a constant time 

increment of 0.1s. In the numerical analysis an upward load was statically applied 

to the submerged beam and suddenly removed. Results for vertical displacements 

at the beam tip are shown in Figure 52, where hydrodynamic damping effects are 

noticeable. As shown, obtained results compared to the conventional 

homogeneous beam solution are good agreement. 
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Figure 51: Deformed Shapes for Various Loading Conditions. 

 

 

Figure 52: Vertical Displacements at Beam Tip. 
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6.3.  

Multilayered Riser Analysis 

6.3.1.  

Flexible Riser in Catenary Configuration 

In this example a 350.0m long flexible catenary riser is considered. In the 

set up, the riser is connected, at the top, to a floating unit and at the bottom to a 

sub-sea tower, at a water depth of 150.0m, which is horizontally displaced 150.0m 

from the top connection. The riser is assumed to be full of seawater. A finite 

element mesh employed 16 equal 20.0m elements, two 10.0m elements and two 

5.0m long elements. Geometric, material and hydrodynamic properties used in the 

model, as well as details of the finite element mesh used, are shown in Figure 53. 

The same riser system has already been analyzed in various publications 

(McNamara et al. [41], Yazdchi and Crisfield [42], Kordkheili et al. [43]). 

 

Figure 53: Flexible Riser in Catenary Configuration. 

The riser was modeled with three layers with the properties shown in Table 

6. A flexible riser is a composite construction of interlocked steel and polymeric 

layers designed to give the structure an axial stiffness approximately five orders of 
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properties presented in Figure 53, the numerical model was modified to consider a 
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Table 6: Multilayer Riser Properties. 

Internal diameter, Di 0.20 m 

 
multilayer riser cross section 

External diameter, Do 0.26 m 

Inner layer thickness, ti 0.003 m 

Middle layer thickness, tm 0.024 m 

Outer layer thickness, to 0.003 m 

Inner layer Young modulus, Ei 6.76E+05 kN/m² 

Middle layer Young modulus, Em 6.76E+03 kN/m² 

Outer layer Young modulus, Eo 6.76E+05 kN/m² 

Inner layer density, i 129.12 kN/m³ 

Middle layer density, m 1.2912 kN/m³ 

Outer layer density, o 129.12 kN/m³ 

Stiffening factor, (EA/EI) 7.3378E+04 

Contact stiffness, kc 1.0E+06 kN/m³ 

 

A static analysis has been carried out considering self-weight and buoyancy 

forces only. Horizontal and vertical reactions at the support points are listed in 

Table 7. The good agreement with the given by McNamara et al. [41] and 

Yazdchi and Crisfield [42] verifies the accuracy of the multilayered element. 

Table 7: Support Reactions at Top and Bottom Connections. 

Reference Vbottom Vtop Hbottom Htop 

McNamara (FEM) 35.83 91.45 11.92 11.57 

McNamara (cable) 35.77 91.51 12.02 12.02 

Crisfield et al. 35.86 91.61 12.04 12.04 

Present work 

inner 12.60 30.34 3.85 3.83 

middle 1.36 3.45 0.45 0.45 

outer 21.88 57.84 7.72 7.74 

sum 35.84 91.63 12.02 12.02 

 

The bending moment diagram along the riser is shown in Figure 54 and it is 

consistent with the ones obtained by McNamara et al. [41],  Yazdchi and Crisfield 

[42] and Kordkheili et al. [43]. 
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Figure 54: Bending Moment Distribution Along Multilayered Riser. 
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of 2.01m and a corresponding period of 14.0s was considered. The results of this 

analysis are shown in Figure 55 and compared to the solution obtained by 

Yazdchi and Crisfield [42]. Both the top and bottom nodes vertical reaction are in 

good agreement with Crisfield’s solutions. 
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Figure 55: Dynamic Analysis Results for Multilayered Flexible Riser. 
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6.3.2.  

Steel Catenary Riser 

In this example, a 4000m long steel catenary riser (SCR) was considered in 

3D analysis. The riser, installed in a water depth of 2220m, is connected to a 

floating production unit (FPU) 15m below the still water level (SWL) with a 

hang-off angle of 17°, as shown in Figure 56. A uniform finite element mesh with 

one thousand elements was used to model the SCR, with the top connection node 

assumed free to rotate while the bottom connection node was fixed. 

 

Figure 56: Initial Deformed Configuration for the Steel Catenary Riser. 

The riser cross section is a carbon-steel pipe with a corrosion resistant alloy 

(CRA - clad or liner) as inner layer and two external layers of syntactic and solid 

polypropylene for thermal insulation. Dimensions and material properties of each 

layer cross section are shown in Table 8, while details on layer arrangements are 

shown in Figure 57.  
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Table 8: Multilayered SCR Cross Section Properties. 

 CRA Steel 
Syntactic 

PP 
Solid PP 

Structural external diameter, Di (m) 0.185 0.225 0.375 0.387 

Structural internal diameter, Do (m) 0.175 0.185 0.225 0.375 

Pipe internal diameter, Di (m) 0.175 0.175 (*) - - 

Layer thickness, ti (m) 0.005 0.020 0.075 0.006 

Young modulus, E (kN/m²) 1.96E08 2.07E08 1.08E06 1.30E06 

Material density,  (kN/m³) 79.853 77.000 6.278 8.829 

Inertia coefficient, CM - 2.0 (*) - 2.0 

Drag coefficient, CD - 1.0 (*) - 1.0 

Contact stiffness, kc (kN/m³) (**)
 1.00E03 1.00E06 1.00E06 

Hydrodynamic diameter (m) - 0.387 (*) - 0.387 

Internal/External coating weight (kN/m) - 0.73295 (*) - - 

Internal/External coating buoyancy (kN/m) - 0.78298 (*) - - 

(*) These values are used only in the single layer homogeneous pipe; 

(**) These values are used only in the unbonded multilayer model. 

 

 

Figure 57: SCR Pipe Cross Section. 

Nonlinear springs attached to the element nodes are used to represent 

vertical contact and friction reactions in longitudinal and lateral directions, at the 

horizontal seabed surface, considering the uncoupled soil model described in 

section 5.2.2. The soil springs properties are shown in Table 9. 

Table 9: Soil Properties for the SCR Model. 

Longitudinal elastic limit, ulx (m) 0.030 

Lateral elastic limit, uly (m) 0.219 

Longitudinal friction coefficient, x 0.71 

Lateral friction coefficient, y 0.73 

Normal spring stiffness, kn (kN/m) 987.0 

Static and dynamic analyses have been carried out considering self-weight, 

buoyancy forces, prescribed displacements at the top connection and a current 

profile along water depth. In the static analysis a horizontal prescribed 

CRA
(alloy 825)

Carbon Steel
(X65)

Syntactic PP

Solid PP
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displacement of 111m (5% of water depth) was applied to the top node, aligned 

with the current profile, in a direction 45° from the XZ plane, as shown in Figure 

58. The current profile is assumed linear, varying from 0.2m/s at seabed to 1.2m/s 

at the sea surface. The static analysis was performed with 21 load increments. In 

the first, only self-weight and buoyancy forces were applied in the model, while 

prescribed displacement and current were applied simultaneously in the following 

20 load increments. 

 

Figure 58: Static Loading for the SCR Model. 

The dynamic analysis was carried out using final static configuration as 

initial condition with all static loading kept constant during dynamic simulation. A 

harmonic excitation was considered in the XZ plane with amplitudes of 3.4m and 

5.1m in X and Z directions, respectively, and period of 11.2s. Figure 59 shows the 

displacement history applied to the riser’s top connection during the total dynamic 

analysis simulation time of 70s in 700 equal time increments. 

 

Figure 59: Dynamic Loading for the SCR Model. 
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In the analysis of the SCR three models were considered: single layer 

homogeneous beam, bonded multilayer beam (cladded pipe) and unbonded 

multilayer beam (lined pipe). In the first model, only the carbon steel layer is 

considered, while the stiffness of the remaining layers was neglected. This is a 

common assumption employed in global riser analysis. In this case, CRA and 

thermal insulation layers are considered in weight, buoyancy and drag load 

evaluations. In multilayered models however, all layers are detailed modeled. 

The deformed configuration at the end of static analysis is essentially the 

same in all model analyses. It is compared to the initial deformed configuration in 

Figure 60. 

 

Figure 60: Deformed Configuration at the end of Static Analysis. 

Results from the static analysis for axial forces, bending moments and 

stresses at top connection and touchdown point (TDP) are shown in Table 10. 
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Table 10: SCR Static Analysis Numerical Results. 

Model 

Self-weight and Buoyancy 
Self-weight, Buoyancy, Prescribed 

Movement and Current 

Axial 
Force at 
Top (kN) 

Bending 
Moment at 
TDP (kN·m) 

von Mises 
Stress at TDP 

(MPa) 

Axial 
Force at 
Top (kN) 

Bending 
Moment at 
TDP (kN·m) 

von Mises 
Stress at TDP 

(MPa) 

Homogeneous (Steel) 2134.87 15.56 83.12 1965.70 21.34 77.52 

Bonded Multilayer       

Sum 2139.52 19.20 - 1970.12 26.32 - 

CRA 359.06 2.47 144.31 330.66 3.38 143.27 

Steel 1722.53 15.54 72.36 1585.93 21.30 71.37 

Syntactic PP 50.59 1.00 - 46.67 1.37 - 

Solid PP 7.34 0.19 - 6.85 0.26 - 

Unbonded Multilayer       

Sum 2142.02 19.18 - 1972.46 26.29 - 

CRA 358.92 2.47 144.31 331.84 3.38 143.26 

Steel 1724.77 15.53 72.38 1586.75 21.28 71.36 

Syntactic PP 50.16 1.00 - 46.21 1.37 - 

Solid PP 8.17 0.19 - 7.67 0.26 - 

 

The stresses in Table 10 were calculated at the external layer wall, by using 

the following expressions: 
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 (149) 

where vM  is the von Mises equivalent stress; xM  is the torsion moment, 

yM  and zM  are the bending moments in y and z directions, respectively; yV  and 

zV  are the shear forces in y and z directions, respectively; A, I and J are the layer 

cross section area, moment of inertia and polar moment of inertia, respectively;  ri 
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and ro are the layer cross section inner and outer radius, respectively; pi and po  are 

the internal and external pressures in the pipe, respectively; and r is radius to the 

point where the stresses are calculated (ri ≤ r ≤ ro); 

Envelopes for axial forces, bending moments and von Misses stresses along 

the line, from the dynamic analysis results of the bonded multilayered model are 

shown in Figures 61 to 63. Note that stresses (Figure 63) at TDP are very similar 

for homogeneous and multilayered models, but they are quite different at the top 

of the riser. This is because, at TDP, bending moment (Figure 62) contributions to 

stresses are predominant, and at the top, the axial forces (Figure 61) have more 

influence on the stresses. 

 

Figure 61: Axial Forces Envelope – Bonded Model. 
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Figure 62: Bending Moment Envelope – Bonded Model. 

 

Figure 63: von Mises Stresses Envelope – Bonded Model. 

Results obtained for the unbonded multilayered model are also compared to 

the homogeneous beam results in Figures 64 to 66. Bonded and unbonded 

multilayered beam solutions are very similar. 
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Figure 64: Axial Forces Envelope – Unbonded Model. 

 

Figure 65: Bending Moment Envelope – Unbonded Model. 
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Figure 66: von Mises Stresses Envelope – Unbonded Model. 

Time history for the axial forces at top connection and the bending moment 

at TDP are shown in Figures 67 and 68, respectively. These results show that the 

homogeneous beam model lead to conservative values for axial forces at the top 

of the riser. 

 

 

Figure 67: Time History for Axial Force at Top Connection. 
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Figure 68: Time History for Bending Moment at Touchdown Point. 

 

The computational efficiency of the multilayered element can be checked in 

Table 11. These results shows that despite the higher number of degrees-of-

freedom (unbonded) or the higher number of stiffness matrices and force vectors 

computations (bonded and unbonded), the multilayer element shows good 

computational efficiency. 

Table 11: Time of analysis for SCR models. 

Model Time (min.) 

Homogeneous 0.42 

Bonded Multilayer 0.89 

Unbonded Multilayer 10.55 
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7.  

Concluding Remarks 

This work focused on representing the behavior of multilayered pipe beams 

considering possible slip conditions between layers, under general three-

dimensional large displacements, in global riser and pipeline analysis. A new 

finite element formulation for nonlinear dynamic analysis of multilayered pipes, 

which is capable of an accurate and detailed representation of multilayered pipes, 

for large displacements and rotations has been presented. The element allows for 

the representation of both perfectly bonded and unbonded pipes. Global results, 

such as displacements and rotations at the element centerline, are in good 

agreement with traditional homogeneous beam formulations available in the 

literature. Additionally, the element provides detailed information on local results 

such as stress distribution and internal forces at each pipe layer, and also the 

contact stress distribution between layers. 

In the first three examples (6.1.1 to 6.1.3) the formulation considering large 

displacements and rotations was tested and the results compared to the ones in 

literature, presenting a very good agreement. Due to lack of model solutions 

available in the literature for multilayered pipes, results from the proposed 

formulation were compared to the ones from traditional homogeneous beam 

formulations (examples 6.2.2 to 6.2.5) or analytical solutions for multilayered 

pipes under axial loading (example 6.2.1). All obtained results are in good 

agreement with the ones presented in the available literature and with the 

analytical solutions. Examples 6.2.5 and 6.3.1 show that the hydrostatic and 

hydrodynamic loadings are well represented in the multilayered pipe beam 

formulation. Applications to riser analysis show very little influence of the 

detailed multilayer representation in the global dynamic response of the riser, as 

indicated in examples 6.3.1 and 6.3.2. However, the results from example 6.3.2  
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illustrate that the homogenous model may lead to conservative values for stresses 

and axial forces at the top of the riser. 

Although not addressed in the examples considered in this work, the FE 

implementation allows for the possibility to consider material layers of distinct 

constitutive models for each layer material. For example, considering the analysis 

of flexible risers, an accurate representation of the material behavior of each layer 

could improve the results of global analysis, leading directly to the stresses at each 

element layer, which is currently obtained with a detailed local analysis of the 

pipe cross section. Another example is the pipeline with an internal layer of 

corrosion resistant metal (cladded or lined pipes) where the cross section is made 

of materials with different yield stresses. In this case, one layer can be subjected 

to plastic strains while the other is still in the elastic regime. This may be the 

subject of a future work. 

The new pipe beam formulation provides the detailed representation of 

multilayered pipes, yet remains very robust and efficient, even in large scale riser 

analysis, as shown by the numerical examples presented. 
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Appendix A:  

Two Layer Pipe Beam 

In this section the numerical formulation for a two layer pipe beam under 

axial and bending loadings is presented. Two simple models are then considered: 

axial (analytical solution) and bending (FEM) displacements. To obtain an 

analytical solution, the simplifying assumption of an "elastic slip" between layers 

was considered, allowing reducing the representation of the interaction between 

layers to a linear elastic effect. The weak formulation for the two layer pipe beam 

element was also obtained and implemented. 

A.1.   

Two Layer Pipe Under Axial Loading 

Consider the two layer pipe bar with different materials in each layer shown 

in Figure A.1. The bar has both layers fixed at one end and is subjected to axial 

forces aF  and bF  at the free end, respectively to layers “a” (inner) and “b” 

(outer). An adhesive material of small thickness ( h ) is assumed at the interface 

between layers. 

 

Figure A.1: Two Layer Pipe Bar Under Axial Loading. 

Figure A.2 shows a detail of the interface between layers with the interlayer 

material under shear strain ( ), due to the different displacement fields  xua  and 

 xub  in each layer. 

L 

y

x

ab

Fa, Fb r

Cross section
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Figure A.2: Detail of the Interface Between Layers. 

The interface thickness ( h ) is assumed very small, compared to the pipe 

cross section dimensions, and the distribution of shear strain through the interface 

thickness is assumed constant. Thus, the displacement field  xui  within the 

interface material is given by: 

   
   

y
h

xuxu
xuxu ab

ai


  (A.1) 

Therefore, the shear strain ( ) and stress ( ) at the interface results in: 

 ab
abi uu

h

G
G

h

uu

dy

du



        and       (A.2) 

where G  is the shear modulus of the adhesive material. 

The equilibrium equation for the composite bar is obtained from the 

equilibrium of each layer. Figure A.3 shows all forces acting at a segment with 

length x  of the inner layer: 

 

Figure A.3: Equilibrium of the Inner Layer “a”. 

By taking the equilibrium of forces in x direction, acting on this segment, 

one obtains: 

 
 

       rx
dx

dN
xrxxNx

dx

xdN
xN a

a
a

a  2   =>   02   (A.3) 

The axial strain at the inner layer cross section is given by: 

 
 

 
dx

du
AExN

AE

xN

Edx

du
x a

aaa

aa

a

a

aa
a     =>   


  (A.4) 

ub(x)

ua(x)

h



ui(x)

Adhesive material

x

x

(x)

Na(x) Na(x + x)

(x)

2r

x

x

(x)

Na(x) Na(x + x)

(x)
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where aE  and aA  are the Young modulus and the cross section area of layer “a”, 

respectively. 

Substituting Eq. (A.4) in (A.3), one obtains the equilibrium equation of 

layer “a”, i.e.: 

      r
h

G
kuukuur

h

G

dx

ud
AE abab

a
aa  2     with,2

2

2


 

(A.5) 

Likewise, considering a segment of outer layer “b”, as shown in Figure A.4, 

the equilibrium equation for this layer as follows is obtained by considering the 

equilibrium of forces in x direction, acting on this segment, as: 

 
 

   
 

 r
dx

xdN
xrxNx

dx

xdN
xN b

b
b

b  2   =>   02   (A.6) 

 

 

Figure A.4: Equilibrium of the External Layer “b”. 

The axial strain at the external layer cross section is given by: 

 
 

 
dx

du
AExN

AE

xN

Edx

du
x b

bbb

bb

b

b

bb
b     =>   


  (A.7) 

Combining the results in Eqs. (A.6) and (A.7), one obtains: 

    abab
b

bb uukuur
h

G

dx

ud
AE  2

2

2

 
(A.8) 

From Eq. (A.8), the displacement field at the inner layer is expressed in 

terms of the displacements at the external layer, i.e.: 

2

2

dx

ud

k

AE
uu bbb

ba   (A.9) 

The equilibrium equation for the composite bar is obtained by substituting 

Eq. (A.9) in Eq. (A.5). Thus, from Eq. (A.9), the second derivative of au  with 

relation to x is obtained as: 

x

x

(x)

(x)

Nb(x) Nb(x + x)2r
x

x

(x)

(x)

Nb(x) Nb(x + x)2r
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4

4

2

2

2

2

dx

ud

k

AE

dx

ud

dx

ud bbbba   (A.10) 

Substituting Eqs. (A.9) and (A.10) in the equilibrium equation of the inner 

layer “a” (Eq. (A.5)), one obtains: 

  0
4

4

2

2


dx

ud

k

AEAE

dx

ud
AEAE bbbaab

bbaa  (A.11) 

Which the solution results in: 

 
  xx

b
A

AB

A

AB

eCeC
B

xCC
xu





 43

21  (A.12) 

where: 
k

AEAE
A bbaa    and   bbaa AEAEB   

Integration constants ( 1C , 2C , 3C  and 4C ) are evaluated from boundary 

conditions, as follows: 

 

 

 









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
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dx
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k

AE

AE

F
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F

Lx
dx
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AE

F

Lx
dx
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x
dx

ud

a

b

u

u

3

3

3

3

2

2

  =>  

0  =>  00

00

0
 (A.13) 

From (A.12), the derivatives in Eq. (A.13) results in 

x
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ABBx
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ABB

dx
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x

A
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dx

ud
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A
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Bdx
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






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1

223

3

2

2

 (A.14) 

and the boundary conditions with the result in Eq. (A.12) gives the following 

system of equations: 

 

   










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
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0
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1
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1
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   =>   

0   =>                              0

   =>                          

0   =>                                    00

 
(A.15) 

That results in the following set of solutions: 
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(A.16) 

Substituting Eq. (A.12) and the expression of its second derivative (Eq. 

(A.14)) in Eq. (A.9) one obtains the displacement field along layer “a”, in the 

form 

 
 






 












 xxbb
a

A

AB

A

AB

eCeC
A

B

k

AE

B

xCC
xu 43

21 1

 
(A.17) 

From the results in Eqs. (A.12) and (A.17), the axial stress distribution 

along each layer is then obtained: 

     

 



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


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bbbbb
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



 

(A.18) 

and the shear stress distribution along the interface between layers is given by: 

  




 

 xxbbbbb A

AB

A

AB

eCeC
r

AE

A

B

dx

ud

r

AE
x 432

2

22 
  (A.19) 

This solution is verified in the example 6.2.1. 

A.2.  

Two Layer Pipe Beam Element Under Bending 

Solutions for bending and torsional loadings cannot be obtained 

analytically. Thus, a numerical approach using FEM is employed. In this case, the 

formulation of the two-layer pipe beam element with interlayer slip is obtained 

under the following set of assumptions: small displacements, rotations and strains 

in both layers; each pipe layer follows Timoshenko’s beam theory; both layers are 

continuously connected with no separation; and interaction between layers is 

considered at interlayer material of small thickness ( h ). Let’s assume that the two 

layer pipe may also be subjected to in-plane loading, as shown in Figure A.5. The 

beam has both layers clamped at end “A” and is subjected to axial and transverse 
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forces and bending moment at the free end. All concentrated loads ( aFx , bFx , 

aFy , bFy  , aM  e bM ) are applied at point “B” as shown in Figure A.5. 

 

Figure A.5: Two Layer Pipe Beam – Initial Configuration. 

Figure A.6 shows the beam in deformed configuration and its degrees-of-

freedom, i.e., displacements and rotations, associated to each layer. 

 

Figure A.6: Two Layer Pipe Beam – Deformed Configuration. 

Following the Principle of Energy Conservation one obtains the equilibrium 

equations from the variation of the total potential energy ( ) of the beam. This 

functional consists of three parts: axial and shear strain energies of each layer, 

shear strain energy of the interlayer material and external loads work. The axial 

strain energy (
xx ) of both layers is 
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(A.20) 

where aI , bI  are each layer cross section moments of inertia, respectively; aE , 

aA , bE  and bA  are the Young modulus and the cross section area of layers “a” 

and “b”, respectively. 
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Assuming small displacements, small slip between layers and no separation 

between layers, lateral displacements are the same for both layers, i.e. vvv ba  . 

Thus, the shear strain energy of both layers is given by 

layerouter  )(
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layerinner  )(

2

0 22

xyxy
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




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








   

(A.21) 

where m  is a geometric correction factor associated for the shear stress 

distribution in each layer cross section; aG  and bG  are the shear modulus of 

layers “a” and “b”, respectively. 

The total external loading work is given by: 

           LMLMLvFFLuFLuFW bbaaybyabxbaxa    (A.22) 

Shear strains and stresses at the interface material, related to bending 

displacements are given by 

 
 

      
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
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abab
i

ruu
h

G
G

h

ruu






 (A.23) 

where   is the angular coordinate at the interface, as shown in Figure A.7. 

 

Figure A.7: Definition of   Angle. 

Finally, the interlayer material strain energy is 

dVii
Vi

 
2

1
 (A.24) 

that combined with the results in Eq. (A.23)  results in  

   dxdruu
h

rG
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L

i






22

00
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2

1
   (A.25) 

and, after angular integration, we have  

r
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
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     r
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kdxuu

r
k abab
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 2      where,

22

1 22
2

0









   (A.26) 

Thus, the total potential energy for the composite bar results in 

W
ixyxx
  

 
(A.27) 

By applying the principle of virtual work ( 0 ), one obtains 

0 W
ixyxx

   (A.28) 

Each energy term in Eq. (A.28) is defined in Eqs. (A.20), (A.21), (A.25) and 

(A.22) which variation with respect to the displacement degrees-of-freedom 

results in 

       

           LMLMLvFFLuFLuFW

dxuuuu
r

k

dx
dx

dv

dx

dv
AG

dx

dv

dx

dv
AGm

dx
dx

d

dx

d
IE

dx

du

dx

du
AE

dx

d

dx

d
IE

dx

du

dx

du
AE

bbaaybyabxbaxa

abababab

L

bbbbaaaa

L

bb
bb

bb
bb

aa
aa

aa
aa

L

i

xy

xx


































































































2

2

0

0

0

 
(A.29) 

The element displacement fields are then obtained, from nodal 

displacements, by using a suitable interpolation matrix  H  in the form 

 

 

 

 

 

 uH ˆ





































b

a

b
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u

u

 (A.30) 

where   is the element local coordinate ( 22
   );   is the element length; 

 H  is an interpolation matrix; û  is the vector of nodal displacements of the 

element.  

In this work the three node quadratic Lagrangian element was considered, 

which interpolation functions are shown in Figure A.8.  
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Figure A.8: Longitudinal Interpolation Functions. 

These functions  ih  are defined, in the local element system, as: 
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(A.31) 

Interpolation matrices (  H ) associated to each degree-of-freedom and 

referred to the element displacement vector ( û ), for the two layer pipe beam 

element, are defied as: 
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 (A.32) 

Thus, the integrals in Eq. (A.29) can be rewritten within the element domain 

sby considering the interpolation functions in Eq. (A.31), i.e.: 
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 (A.33) 

By taking displacements derivatives, one obtains: 
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(A.34) 

Equation (A.28) results, for the complete element assemblage, in the 

following system of equations: 


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1 2
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FUK ˆ  (A.35) 

where K  is the global stiffness matrix resulting from each element stiffness 

matrix ( eK ); Û  is the nodal displacement vector for the entire structure; F  is the 

global external loading vector. 

Thus, the element stiffness matrix associated to six degrees-of-freedom per 

node is obtained as 
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 (A.36) 

where: 
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(A.37) 

By solving the integrals of Eq. (A.36), one obtains the two layer pipe beam 

stiffness matrix, in closed form: 
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(A.38) 
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The internal forces and bending moment in a beam element are calculated as 

follows:  

dx

du
EAN   and  

dx

d
EIM


  (A.39) 

Thus, considering each element layer interpolated nodal displacements and 

rotations, one obtains  
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(A.40) 

From these internal forces the axial stresses along each element layer is 

calculated: 
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(A.41) 

Interface shear stresses at each element node are calculated from Eq. (A.23): 

            yruu
r

k
y i

a

i

b

i

a

i

b

i 


 
2  

(A.42) 

where i  is node index. 
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Appendix B:   

Nonlinear Multilayer Pipe Beam Element Matrices 

B.1.  

Linear Stiffness Matrix 

By solving the integrals in Eq. (38), one can rewrite the linear stiffness matrix for element layer-k in closed form, as follows: 
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(B.1) 

where 
kE  and kG  are material Young and shear modulus of layer-k, respectively; 

kA , 
kI  and kJ  are cross section area, moment of 

inertia with respect to the cross-section axis of symmetry, and polar moment of inertia with respect to the layer-k cross section 

geometric center, respectively. 

symmetric 
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B.2.  

Geometric Stiffness Matrix 

Accordingly, the stiffness matrix associated to the nonlinear strain components defined in Eq. (12) is obtained in closed form 

as: 
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(B.2) 

with: 
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B.3.  

Mass Matrix 

The layer mass matrix is obtained by solving integrals in Eq. (42) in closed form, as follows: 
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(B.3) 

where: 
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with kV  being the volume of layer- k . 

symmetric 
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B.4.  

Interface Stiffness Matrix 

The stiffness matrix for interface k , considering a linear-elastic slip model is given in closed form by: 
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(B.4) 
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